All Resources
In this article:
minus iconplus icon
Share the Blog

Understanding Data Movement to Avert Proliferation Risks

April 10, 2024
4
Min Read
Data Sprawl

Understanding the perils your cloud data faces as it proliferates throughout your organization and ecosystems is a monumental task in the highly dynamic business climate we operate in. Being able to see data as it is being copied and travels, monitor its activity and access, and assess its posture allows teams to understand and better manage the full effect of data sprawl.

 

It ‘connects the dots’ for security analysts who must continually evaluate true risks and threats to data so they can prioritize their efforts. Data similarity and movement are important behavioral indicators in assessing and addressing those risks. This blog will explore this topic in depth.

What Is Data Movement

Data movement is the process of transferring data from one location or system to another – from A to B. This transfer can be between storage locations, databases, servers, or network locations. Copying data from one location to another is simple, however, data movement can get complicated when managing volume, velocity, and variety.

  • Volume: Handling large amounts of data.
  • Velocity: Overseeing the pace of data generation and processing.
  • Variety: Managing a variety of data types.

How Data Moves in the Cloud

Data is free and can be shared anywhere. The way organizations leverage data is an integral part of their success. Although there are many business benefits to moving and sharing data (at a rapid pace), there are also many concerns that arise, mainly dealing with privacy, compliance, and security. Data needs to move quickly, securely, and have the proper security posture at all times.  

These are the main ways that data moves in the cloud:

1. Data Distribution in Internal Services: Internal services and applications manage data, saving it across various locations and data stores.

2. ETLs: Extract, Transform, Load processes, involve combining data from multiple sources into a central repository known as a data warehouse. This centralized view supports applications in aggregating diverse data points for organizational use.

3. Developer and Data Scientist Data Usage: Developers and data scientists utilize data for testing and development purposes. They require both real and synthetic data to test applications and simulate real-life scenarios to drive business outcomes.

4. AI/ML/LLM and Customer Data Integration: The utilization of customer data in AI/ML learning processes is on the rise. Organizations leverage such data to train models and apply the results across various organizational units, catering to different use-cases.

What Is Misplaced Data

"Misplaced data" refers to data that has been moved from an approved environment to an unapproved environment. For example, a folder that is stored in the wrong location within a computer system or network. This can result from human error, technical glitches, or issues with data management processes.

 

When unauthorized data is stored in an environment that is not designed for the type of data, it can lead to data leaks, security breaches, compliance violations, and other negative outcomes.

With companies adopting more cloud services, and being challenged with properly managing the subsequent data sprawl, having misplaced data is becoming more common, which can lead to security, privacy, and compliance issues.

The Challenge of Data Movement and Misplaced Data

Organizations strive to secure their sensitive data by keeping it within carefully defined and secure environments. The pervasive data sprawl faced by nearly every organization in the cloud makes it challenging to effectively protect data, given its rapid multiplication and movement.

It is encouraged for business productivity to leverage data and use it for various purposes that can help enhance and grow the business. However, with the advantages, come disadvantages. There are risks to having multiple owners and duplicate data..

To address this challenge, organizations can leverage the analysis of similar data patterns to gain a comprehensive understanding on how data flows within the organization and help security teams first get visibility of those movement patterns, and then identify whether this movement is authorized. Then they can protect it accordingly and understand which unauthorized movement should be blocked.

This proactive approach allows them to position themselves strategically. It can involve ensuring robust security measures for data at each location, re-confining it by relocating, or eliminating unnecessary duplicates. Additionally, this analytical capability proves valuable in scenarios tied to regulatory and compliance requirements, such as ensuring GDPR - compliant data residency.

 Identifying Redundant Data and Saving Cloud Storage Costs

The identification of similarities empowers Chief Information Security Officers (CISOs) to implement best practices, steering clear of actions that lead to the creation of redundant data.

Detecting redundant data helps reduce cloud storage costs and drive up operational efficiency from targeted and prioritized remediation efforts that focus on the critical data risks that matter. 

This not only enhances data security posture, but also contributes to a more streamlined and efficient data management strategy.

“Sentra has helped us to reduce our risk of data breaches and to save money on cloud storage costs.”

-Benny Bloch, CISO at Global-e

Security Concerns That Arise

  1. Data Security Posture Variations Across Locations: Addressing instances where similar data, initially secure, experiences a degradation in security posture during the copying process (e.g., transitioning from private to public, or from encrypted to unencrypted).
  1. Divergent Access Profiles for Similar Data: Exploring scenarios where data, previously accessible by a limited and regulated set of identities, now faces expanded access by a larger number of identities (users), resulting in a loss of control.
  1. Data Localization and Compliance Violations: Examining situations where data, mandated to be localized in specific regions, is found to be in violation of organizational policies or compliance rules (with GDPR as a prominent example). By identifying similar sensitive data, we can pinpoint these issues and help users mitigate them.
  1. Anonymization Challenges in ETL Processes: Identifying issues in ETL processes where data is not only moved but also anonymized. Pinpointing similar sensitive data allows users to detect and mitigate anonymization-related problems.
  1. Customer Data Migration Across Environments: Analyzing the movement of customer data from production to development environments. This can be used by engineers to test real-life use-cases.
  2. Data Data Democratization and Movement Between Cloud and Personal Stores: Investigating instances where users export data from organizational cloud stores to personal drives (e.g., OneDrive) for purposes of development, testing, or further business analysis. Once this data is moved to personal data stores, it typically is less secure. This is due to the fact that these personal drives are less monitored and protected, and in control of the private entity (the employee), as opposed to the security/dev teams. These personal drives may be susceptible to security issues arising from misconfiguration, user mistakes or insufficient knowledge.

How Sentra’s DSPM Helps Navigate Data Movement Challenges

  1. Discover and accurately classify the most sensitive data and provide extensive context about it, for example:
  • Where it lives
  • Where it has been copied or moved to
  • Who has access to it
  1. Highlight misconfigurations by correlating similar data that has different security posture. This helps you pinpoint the issue and adjust it according to the right posture.
  2. Quickly identify compliance violations, such as GDPR - when European customer data moves outside of the allowed region, or when financial data moves outside a PCI compliant environment.
  3. Identify access changes, which helps you to understand the correct access profile by correlating similar data pieces that have different access profiles.

For example, the same data is well kept in a specific environment and can be accessed by 2 very specific users. When the same data moves to a developers environment, it can then be accessed by the whole data engineering team, which exposes more risks.

Leveraging Data Security Posture Management (DSPM) and Data Detection and Response (DDR) tools proves instrumental in addressing the complexities of data movement challenges. These tools play a crucial role in monitoring the flow of sensitive data, allowing for the swift remediation of exposure incidents and vulnerabilities in real-time. The intricacies of data movement, especially in hybrid and multi-cloud deployments, can be challenging, as public cloud providers often lack sufficient tooling to comprehend data flows across various services and unmanaged databases.

 

Our innovative cloud DLP tooling takes the lead in this scenario, offering a unified approach by integrating static and dynamic monitoring through DSPM and DDR. This integration provides a comprehensive view of sensitive data within your cloud account, offering an updated inventory and mapping of data flows. Our agentless solution automatically detects new sensitive records, classifies them, and identifies relevant policies. In case of a policy violation, it promptly alerts your security team in real time, safeguarding your crucial data assets.

In addition to our robust data identification methods, we prioritize the implementation of access control measures. This involves establishing Role-based Access Control (RBAC) and Attribute-based Access Control (ABAC) policies, so that the right users have permissions at the right times.

Identifying data movement with Sentra

Identifying Data Movement With Sentra

Sentra has developed different methods to identify data movements and similarities based on the content of two assets. Our advanced capabilities allow us to pinpoint fully duplicated data, identify similar data, and even uncover instances of partially duplicated data that may have been copied or moved across different locations. 

Moreover, we recognize that changes in access often accompany the relocation of assets between different locations. 

As part of Sentra’s Data Security Posture Management (DSPM) solution, we proactively manage and adapt access controls to accommodate these transitions, maintaining the integrity and security of the data throughout its lifecycle.

These are the 3 methods we are leveraging:

  1. Hash similarity - Using each asset unique identifier to locate it across the different data stores of the customer environment.
  2. Schema similarity - Locate the exact or similar schemas that indicated that there might be similar data in them and then leverage other metadata and statistical methods to simplify the data and find necessary correlations.
  3. Entity Matching similarity - Detects when parts of files or tables are copied to another data asset. For example, an ETL that extracts only some columns from a table into a new table in a data warehouse. 

Another example would be if PII is found in a lower environment, Sentra could detect if this is real or mock customer PII, based on whether this PII was also found in the production environment.

PII found in a lower environment

Conclusion

Understanding and managing data sprawl are critical tasks in the dynamic business landscape. Monitoring data movement, access, and posture enable teams to comprehend the full impact of data sprawl, connecting the dots for security analysts in assessing true risks and threats. 

Sentra addresses the challenge of data movement by utilizing advanced methods like hash, schema, and entity similarity to identify duplicate or similar data across different locations. Sentra's holistic Data Security Posture Management (DSPM) solution not only enhances data security but also contributes to a streamlined data management strategy. 

The identified challenges and Sentra's robust methods emphasize the importance of proactive data management and security in the dynamic digital landscape.

To learn more about how you can enhance your data security posture, schedule a demo with one of our experts.

<blogcta-big>

Ran is a passionate product and customer success leader with over 12 years of experience in the cybersecurity sector. He combines extensive technical knowledge with a strong passion for product innovation, research and development (R&D), and customer success to deliver robust, user-centric security solutions. His leadership journey is marked by proven managerial skills, having spearheaded multidisciplinary teams towards achieving groundbreaking innovations and fostering a culture of excellence. He started at Sentra as a Senior Product Manager and is currently the Head of Technical Account Management, located in NYC.

Subscribe

Latest Blog Posts

Gilad Golani
Gilad Golani
January 18, 2026
3
Min Read

False Positives Are Killing Your DSPM Program: How to Measure Classification Accuracy

False Positives Are Killing Your DSPM Program: How to Measure Classification Accuracy

As more organizations move sensitive data to the cloud, Data Security Posture Management (DSPM) has become a critical security investment. But as DSPM adoption grows, a big problem is emerging: security teams are overwhelmed by false positives that create too much noise and not enough useful insight. If your security program is flooded with unnecessary alerts, you end up with more risk, not less.

Most enterprises say their existing data discovery and classification solutions fall short, primarily because they misclassify data. False positives waste valuable analyst time and deteriorate trust in your security operation. Security leaders need to understand what high-quality data classification accuracy really is, why relying only on regex fails, and how to use objective metrics like precision and recall to assess potential tools. Here’s a look at what matters most for accuracy in DSPM.

What Does Good Data Classification Accuracy Look Like?

To make real progress with data classification accuracy, you first need to know how to measure it. Two key metrics - precision and recall - are at the core of reliable classification. Precision tells you the share of correct positive results among everything identified as positive, while recall shows the percentage of actual sensitive items that get caught. You want both metrics to be high. Your DSPM solution should identify sensitive data, such as PII or PCI, without generating excessive false or misclassified results.

The F1-score adds another perspective, blending precision and recall for a single number that reflects both discovery and accuracy. On the ground, these metrics mean fewer false alerts, quicker responses, and teams that spend their time fixing problems rather than chasing noise. "Good" data classification produces consistent, actionable results, even as your cloud data grows and changes.

The Hidden Cost of Regex-Only Data Discovery

A lot of older DSPM tools still depend on regular expressions (regex) to classify data in both structured and unstructured systems. Regex works for certain fixed patterns, but it struggles with the diverse, changing data types common in today’s cloud and SaaS environments. Regex can't always recognize if a string that “looks” like a personal identifier is actually just a random bit of data. This results in security teams buried by alerts they don’t need, leading to alert fatigue.

Far from helping, regex-heavy approaches waste resources and make it easier for serious risks to slip through. As privacy regulations become more demanding and the average breach hit $4.4 million according to the annual "Cost of a Data Breach Report" by IBM and the Ponemon Institute, ignoring precision and recall is becoming increasingly costly.

How to Objectively Test DSPM Accuracy in Your POC

If your current DSPM produces more noise than value, a better method starts with clear testing. A meaningful proof-of-value (POV) process uses labeled data and a confusion matrix to calculate true positives, false positives, and false negatives. Don’t rely on vendor promises. Always test their claims with data from your real environment. Ask hard questions: How does the platform classify unstructured data? How much alert noise can you expect? Can it keep accuracy high even when scanning huge volumes across SaaS, multi-cloud, and on-prem systems? The best DSPM tool cuts through the clutter, surfacing only what matters.

Sentra Delivers Highest Accuracy with Small Language Models and Context

Sentra’s DSPM platform raises the bar by going beyond regex, using purpose-built small language models (SLMs) and advanced natural language processing (NLP) for context-driven data classification at scale. Customers and analysts consistently report that Sentra achieves over the highest classification accuracy for PII and PCI, with very few false positives.

Gartner Review - Sentra received 5 stars

How does Sentra get these results without data ever leaving your environment? The platform combines multi-cloud discovery, agentless install, and deep contextual awareness - scanning extensive environments and accurately discerning real risks from background noise. Whether working with unstructured cloud data, ever-changing SaaS content, or traditional databases, Sentra keeps analysts focused on real issues and helps you stay compliant. Instead of fighting unnecessary alerts, your team sees clear results and can move faster with confidence.

Want to see Sentra DSPM in action? Schedule a Demo.

Reducing False Positives Produces Real Outcomes

Classification accuracy has a direct impact on whether your security is efficient or overwhelmed. With compliance rules tightening and threats growing, security teams cannot afford DSPM solutions that bury them in false positives. Regex-only tools no longer cut it - precision, recall, and truly reliable results should be standard.

Sentra’s SLM-powered, context-aware classification delivers the trustworthy performance businesses need, changing DSPM from just another alert engine to a real tool for reducing risk. Want to see the difference yourself? Put Sentra’s accuracy to the test in your own environment and finally move past false positive fatigue.

<blogcta-big>

Read More
Ward Balcerzak
Ward Balcerzak
January 14, 2026
4
Min Read

The Real Business Value of DSPM: Why True ROI Goes Beyond Cost Savings

The Real Business Value of DSPM: Why True ROI Goes Beyond Cost Savings

As enterprises scale cloud usage and adopt AI, the value of Data Security Posture Management (DSPM) is no longer just about checking a tool category box. It’s about protecting what matters most: sensitive data that fuels modern business and AI workflows.

Traditional content on DSPM often focuses on cost components and deployment considerations. That’s useful, but incomplete. To truly justify DSPM to executives and boards, security leaders need a holistic, outcome-focused view that ties data risk reduction to measurable business impact.

In this blog, we unpack the real, measurable benefits of DSPM, beyond just cost savings, and explain how modern DSPM strategies deliver rapid value far beyond what most legacy tools promise. 

1. Visibility Isn’t Enough - You Need Context

A common theme in DSPM discussions is that tools help you see where sensitive data lives. That’s important, but it’s only the first step. Real value comes from understanding context. Who can access the data, how it’s being used, and where risk exists in the wider security posture. Organizations that stop at discovery often struggle to prioritize risk and justify spend.

Modern DSPM solutions go further by:

  • Correlating data locations with access rights and usage patterns
  • Mapping sensitive data flows across cloud, SaaS, and hybrid environments
  • Detecting shadow data stores and unmanaged copies that silently increase exposure
  • Linking findings to business risk and compliance frameworks

This contextual intelligence drives better decisions and higher ROI because teams aren’t just counting sensitive data, they’re continuously governing it.

2. DSPM Saves Time and Shrinks Attack Surface Fast

One way DSPM delivers measurable business value is by streamlining functions that used to be manual, siloed, and slow:

  • Automated classification reduces manual tagging and human error
  • Continuous discovery eliminates periodic, snapshot-alone inventories
  • Policy enforcement reduces time spent reacting to audit requests

This translates into:

  • Faster compliance reporting
  • Shorter audit cycles
  • Rapid identification and remediation of critical risks

For security leaders, the speed of insight becomes a competitive advantage, especially in environments where data volumes grow daily and AI models can touch every corner of the enterprise.

3. Cost Benefits That Matter, but with Context

Lately I’m hearing many DSPM discussions break down cost components like scanning compute, licensing, operational expenses, and potential cloud savings. That’s a good start because DSPM can reduce cloud waste by identifying stale or redundant data, but it’s not the whole story.

 

Here’s where truly strategic DSPM differs:

Operational Efficiency

When DSPM tools automate discovery, classification, and risk scoring:

  • Teams spend less time on manual reports
  • Alert fatigue drops as noise is filtered
  • Engineers can focus on higher-value work

Breach Avoidance

Data breaches are expensive. According to industry studies, the average cost of a data breach runs into millions, far outweighing the cost of DSPM itself. A DSPM solution that prevents even one breach or major compliance failure pays for itself tenfold

Compliance as a Value Center

Rather than treating compliance as a cost center consider that:

  • DSPM reduces audit overhead
  • Provides automated evidence for frameworks like GDPR, HIPAA, PCI DSS
  • Improves confidence in reporting accuracy

That’s a measurable business benefit CFOs can appreciate and boards expect.

4. DSPM Reduces Risk Vector Multipliers Like AI

One benefit that’s often under-emphasized is how DSPM reduces risk vector multipliers, the factors that amplify risk exponentially beyond simple exposure counts.

In 2026 and beyond, AI systems are increasingly part of the risk profile. Modern DSPM help reduce the heightened risk from AI by:

  • Identifying where sensitive data intersects with AI training or inference pipelines
  • Governing how AI tools and assistants can access sensitive content
  • Providing risk context so teams can prevent data leakage into LLMs

This kind of data-centric, contextual, and continuous governance should be considered a requirement for secure AI adoption, no compromise.

5. Telling the DSPM ROI Story

The most convincing DSPM ROI stories aren’t spreadsheets, they’re narratives that align with business outcomes. The key to building a credible ROI case is connecting metrics, security impact, and business outcomes:

Metric Security Impact Business Outcome
Faster discovery & classification Fewer blind spots Reduced breach likelihood
Consistent governance enforcement Fewer compliance issues Lower audit cost
Contextual risk scoring Better prioritization Efficient resource allocation
AI governance Controlled AI exposure Safe innovation

By telling the story this way, security leaders can speak in terms the board and executives care about: risk reduction, compliance assurance, operational alignment, and controlled growth.

How to Evaluate DSPM for Real ROI

To capture tangible return, don’t evaluate DSPM solely on cost or feature checklists. Instead, test for:

1. Scalability Under Real Load

Can the tool discover and classify petabytes of data, including unstructured content, without degrading performance?

2. Accuracy That Holds Up

Poor classification undermines automation. True ROI requires consistent, top-performing accuracy rates.

3. Operational Cost Predictability

Beware of DSPM solutions that drive unexpected cloud expenses due to inefficient scanning or redundant data reads.

4. Integration With Enforcement Workflows

Visibility without action isn’t ROI. Your DSPM should feed DLP, IAM/CIEM, SIEM/SOAR, and compliance pipelines (ticketing, policy automation, alerts).

ROI Is a Journey, Not a Number

Costs matter, but value lives in context. DSPM is not just a cost center, it’s a force multiplier for secure cloud operations, AI readiness, compliance, and risk reduction. Instead of seeing DSPM as another tool, forward-looking teams view it as a fundamental decision support engine that changes how risk is measured, prioritized, and controlled.

Ready to See Real DSPM Value in Your Environment?

Download Sentra’s “DSPM Dirty Little Secrets” guide, a practical roadmap for evaluating DSPM with clarity, confidence, and production reality in mind.

👉 Download the DSPM Dirty Little Secrets guide now

Want a personalized walkthrough of how Sentra delivers measurable DSPM value?
👉 Request a demo

<blogcta-big>

Read More
Ofir Yehoshua
Ofir Yehoshua
January 13, 2026
3
Min Read

Why Infrastructure Security Is Not Enough to Protect Sensitive Data

Why Infrastructure Security Is Not Enough to Protect Sensitive Data

For years, security programs have focused on protecting infrastructure: networks, servers, endpoints, and applications. That approach made sense when systems were static and data rarely moved. It’s no longer enough.

Recent breach data shows a consistent pattern. Organizations detect incidents, restore systems, and close tickets, yet remain unable to answer the most important question regulators and customers often ask:

Where does my sensitive data reside?

Who or what has access to this data and are they authorized?

Which specific sensitive datasets were accessed or exfiltrated?

Infrastructure security alone cannot answer that question.

Infrastructure Alerts Detect Events, Not Impact

Most security tooling is infrastructure-centric by design. SIEMs, EDRs, NDRs, and CSPM tools monitor hosts, processes, IPs, and configurations. When something abnormal happens, they generate alerts.

What they do not tell you is:

  • Which specific datasets were accessed
  • Whether those datasets contained PHI or PII
  • Whether sensitive data was copied, moved, or exfiltrated

Traditional tools monitor the "plumbing" (network traffic, server logs, etc.) While they can flag that a database was accessed by an unauthorized IP, they often cannot distinguish between an attacker downloading a public template or downloading a table containing 50,000 Social Security numbers. An alert is not the same as understanding the exposure of the data stored inside it. Without that context, incident response teams are forced to infer impact rather than determine it.

The “Did They Access the Data?” Problem

This gap becomes pronounced during ransomware and extortion incidents.

In many cases:

  • Operations are restored from backups
  • Infrastructure is rebuilt
  • Access is reduced
  • (Hopefully!) attackers are removed from the environment

Yet organizations still cannot confirm whether sensitive data was accessed or exfiltrated during the dwell time.

Without data-level visibility:

  • Legal and compliance teams must assume worst-case exposure
  • Breach notifications expand unnecessarily
  • Regulatory penalties increase due to uncertainty, not necessarily damage

The inability to scope an incident accurately is not a tooling failure during the breach, it is a visibility failure that existed long before the breach occurred. Under regulations like GDPR or CCPA/CPRA, if an organization cannot prove that sensitive data wasn’t accessed during a breach, they are often legally required to notify all potentially affected parties. This ‘over-notification’ is costly and damaging to reputation.

Data Movement Is the Real Attack Vulnerability

Modern environments are defined by constant data movement:

  • Cloud migrations
  • SaaS integrations
  • App dev lifecycles
  • Analytics and ETL pipelines
  • AI and ML workflows

Each transition creates blind spots.

Legacy platforms awaiting migration often exist in a “wait state” with reduced monitoring. Data copied into cloud storage or fed into AI pipelines frequently loses lineage and classification context. Posture may vary and traditional controls no longer apply consistently. From an attacker’s perspective, these environments are ideal. From a defender’s perspective, they are blind spots.

Policies Are Not Proof

Most organizations can produce policies stating that sensitive data is encrypted, access-controlled, and monitored. Increasingly, regulators are moving from point-in-time audits to requiring continuous evidence of control.  

Regulators are asking for evidence:

  • Where does PHI live right now?
  • Who or what can access it?
  • How do you know this hasn’t changed since the last audit?

Point-in-time audits cannot answer those questions. Neither can static documentation. Exposure and access drift continuously, especially in cloud and AI-driven environments.

Compliance depends on continuous control, not periodic attestation.

What Data-Centric Security Actually Requires

Accurately proving compliance and scoping breach impact requires security visibility that is anchored to the data itself, not the infrastructure surrounding it.

At a minimum, this means:

  • Continuous discovery and classification of sensitive data
  • Consistent compliance reporting and controls across cloud, SaaS, On-Prem, and migration states
  • Clear visibility into which identities, services, and AI tools can access specific datasets
  • Detection and response signals tied directly to sensitive data exposure and movement

This is the operational foundation of Data Security Posture Management (DSPM) and Data Detection and Response (DDR). These capabilities do not replace infrastructure security controls; they close the gap those controls leave behind by connecting security events to actual data impact.

This is the problem space Sentra was built to address.

Sentra provides continuous visibility into where sensitive data lives, how it moves, and who or what can access it, and ties security and compliance outcomes to that visibility. Without this layer, organizations are forced to infer breach impact and compliance posture instead of proving it.

Why Data-Centric Security Is Required for Today's Compliance and Breach Response

Infrastructure security can detect that an incident occurred, but it cannot determine which sensitive data was accessed, copied, or exfiltrated. Without data-level evidence, organizations cannot accurately scope breaches, contain risk, or prove compliance, regardless of how many alerts or controls are in place. Modern breach response and regulatory compliance require continuous visibility into sensitive data, its lineage, and its access paths. Infrastructure-only security models are no longer sufficient.

Want to see how Sentra provides complete visibility and control of sensitive data?

Schedule a Demo

<blogcta-big>

Read More
Expert Data Security Insights Straight to Your Inbox
What Should I Do Now:
1

Get the latest GigaOm DSPM Radar report - see why Sentra was named a Leader and Fast Mover in data security. Download now and stay ahead on securing sensitive data.

2

Sign up for a demo and learn how Sentra’s data security platform can uncover hidden risks, simplify compliance, and safeguard your sensitive data.

3

Follow us on LinkedIn, X (Twitter), and YouTube for actionable expert insights on how to strengthen your data security, build a successful DSPM program, and more!

Before you go...

Get the Gartner Customers' Choice for DSPM Report

Read why 98% of users recommend Sentra.

White Gartner Peer Insights Customers' Choice 2025 badge with laurel leaves inside a speech bubble.