Sentra Launches Breakthrough AI Classification Capabilities!
All Resources
In this article:
minus iconplus icon
Share the Blog

Understanding Data Movement to Avert Proliferation Risks

April 10, 2024
4
Min Read
Data Sprawl

Understanding the perils your cloud data faces as it proliferates throughout your organization and ecosystems is a monumental task in the highly dynamic business climate we operate in. Being able to see data as it is being copied and travels, monitor its activity and access, and assess its posture allows teams to understand and better manage the full effect of data sprawl.

 

It ‘connects the dots’ for security analysts who must continually evaluate true risks and threats to data so they can prioritize their efforts. Data similarity and movement are important behavioral indicators in assessing and addressing those risks. This blog will explore this topic in depth.

What Is Data Movement

Data movement is the process of transferring data from one location or system to another – from A to B. This transfer can be between storage locations, databases, servers, or network locations. Copying data from one location to another is simple, however, data movement can get complicated when managing volume, velocity, and variety.

  • Volume: Handling large amounts of data.
  • Velocity: Overseeing the pace of data generation and processing.
  • Variety: Managing a variety of data types.

How Data Moves in the Cloud

Data is free and can be shared anywhere. The way organizations leverage data is an integral part of their success. Although there are many business benefits to moving and sharing data (at a rapid pace), there are also many concerns that arise, mainly dealing with privacy, compliance, and security. Data needs to move quickly, securely, and have the proper security posture at all times.  

These are the main ways that data moves in the cloud:

1. Data Distribution in Internal Services: Internal services and applications manage data, saving it across various locations and data stores.

2. ETLs: Extract, Transform, Load processes, involve combining data from multiple sources into a central repository known as a data warehouse. This centralized view supports applications in aggregating diverse data points for organizational use.

3. Developer and Data Scientist Data Usage: Developers and data scientists utilize data for testing and development purposes. They require both real and synthetic data to test applications and simulate real-life scenarios to drive business outcomes.

4. AI/ML/LLM and Customer Data Integration: The utilization of customer data in AI/ML learning processes is on the rise. Organizations leverage such data to train models and apply the results across various organizational units, catering to different use-cases.

What Is Misplaced Data

"Misplaced data" refers to data that has been moved from an approved environment to an unapproved environment. For example, a folder that is stored in the wrong location within a computer system or network. This can result from human error, technical glitches, or issues with data management processes.

 

When unauthorized data is stored in an environment that is not designed for the type of data, it can lead to data leaks, security breaches, compliance violations, and other negative outcomes.

With companies adopting more cloud services, and being challenged with properly managing the subsequent data sprawl, having misplaced data is becoming more common, which can lead to security, privacy, and compliance issues.

The Challenge of Data Movement and Misplaced Data

Organizations strive to secure their sensitive data by keeping it within carefully defined and secure environments. The pervasive data sprawl faced by nearly every organization in the cloud makes it challenging to effectively protect data, given its rapid multiplication and movement.

It is encouraged for business productivity to leverage data and use it for various purposes that can help enhance and grow the business. However, with the advantages, come disadvantages. There are risks to having multiple owners and duplicate data..

To address this challenge, organizations can leverage the analysis of similar data patterns to gain a comprehensive understanding on how data flows within the organization and help security teams first get visibility of those movement patterns, and then identify whether this movement is authorized. Then they can protect it accordingly and understand which unauthorized movement should be blocked.

This proactive approach allows them to position themselves strategically. It can involve ensuring robust security measures for data at each location, re-confining it by relocating, or eliminating unnecessary duplicates. Additionally, this analytical capability proves valuable in scenarios tied to regulatory and compliance requirements, such as ensuring GDPR - compliant data residency.

 Identifying Redundant Data and Saving Cloud Storage Costs

The identification of similarities empowers Chief Information Security Officers (CISOs) to implement best practices, steering clear of actions that lead to the creation of redundant data.

Detecting redundant data helps reduce cloud storage costs and drive up operational efficiency from targeted and prioritized remediation efforts that focus on the critical data risks that matter. 

This not only enhances data security posture, but also contributes to a more streamlined and efficient data management strategy.

“Sentra has helped us to reduce our risk of data breaches and to save money on cloud storage costs.”

-Benny Bloch, CISO at Global-e

Security Concerns That Arise

  1. Data Security Posture Variations Across Locations: Addressing instances where similar data, initially secure, experiences a degradation in security posture during the copying process (e.g., transitioning from private to public, or from encrypted to unencrypted).
  1. Divergent Access Profiles for Similar Data: Exploring scenarios where data, previously accessible by a limited and regulated set of identities, now faces expanded access by a larger number of identities (users), resulting in a loss of control.
  1. Data Localization and Compliance Violations: Examining situations where data, mandated to be localized in specific regions, is found to be in violation of organizational policies or compliance rules (with GDPR as a prominent example). By identifying similar sensitive data, we can pinpoint these issues and help users mitigate them.
  1. Anonymization Challenges in ETL Processes: Identifying issues in ETL processes where data is not only moved but also anonymized. Pinpointing similar sensitive data allows users to detect and mitigate anonymization-related problems.
  1. Customer Data Migration Across Environments: Analyzing the movement of customer data from production to development environments. This can be used by engineers to test real-life use-cases.
  2. Data Data Democratization and Movement Between Cloud and Personal Stores: Investigating instances where users export data from organizational cloud stores to personal drives (e.g., OneDrive) for purposes of development, testing, or further business analysis. Once this data is moved to personal data stores, it typically is less secure. This is due to the fact that these personal drives are less monitored and protected, and in control of the private entity (the employee), as opposed to the security/dev teams. These personal drives may be susceptible to security issues arising from misconfiguration, user mistakes or insufficient knowledge.

How Sentra’s DSPM Helps Navigate Data Movement Challenges

  1. Discover and accurately classify the most sensitive data and provide extensive context about it, for example:
  • Where it lives
  • Where it has been copied or moved to
  • Who has access to it
  1. Highlight misconfigurations by correlating similar data that has different security posture. This helps you pinpoint the issue and adjust it according to the right posture.
  2. Quickly identify compliance violations, such as GDPR - when European customer data moves outside of the allowed region, or when financial data moves outside a PCI compliant environment.
  3. Identify access changes, which helps you to understand the correct access profile by correlating similar data pieces that have different access profiles.

For example, the same data is well kept in a specific environment and can be accessed by 2 very specific users. When the same data moves to a developers environment, it can then be accessed by the whole data engineering team, which exposes more risks.

Leveraging Data Security Posture Management (DSPM) and Data Detection and Response (DDR) tools proves instrumental in addressing the complexities of data movement challenges. These tools play a crucial role in monitoring the flow of sensitive data, allowing for the swift remediation of exposure incidents and vulnerabilities in real-time. The intricacies of data movement, especially in hybrid and multi-cloud deployments, can be challenging, as public cloud providers often lack sufficient tooling to comprehend data flows across various services and unmanaged databases.

 

Our innovative cloud DLP tooling takes the lead in this scenario, offering a unified approach by integrating static and dynamic monitoring through DSPM and DDR. This integration provides a comprehensive view of sensitive data within your cloud account, offering an updated inventory and mapping of data flows. Our agentless solution automatically detects new sensitive records, classifies them, and identifies relevant policies. In case of a policy violation, it promptly alerts your security team in real time, safeguarding your crucial data assets.

In addition to our robust data identification methods, we prioritize the implementation of access control measures. This involves establishing Role-based Access Control (RBAC) and Attribute-based Access Control (ABAC) policies, so that the right users have permissions at the right times.

Identifying data movement with Sentra

Identifying Data Movement With Sentra

Sentra has developed different methods to identify data movements and similarities based on the content of two assets. Our advanced capabilities allow us to pinpoint fully duplicated data, identify similar data, and even uncover instances of partially duplicated data that may have been copied or moved across different locations. 

Moreover, we recognize that changes in access often accompany the relocation of assets between different locations. 

As part of Sentra’s Data Security Posture Management (DSPM) solution, we proactively manage and adapt access controls to accommodate these transitions, maintaining the integrity and security of the data throughout its lifecycle.

These are the 3 methods we are leveraging:

  1. Hash similarity - Using each asset unique identifier to locate it across the different data stores of the customer environment.
  2. Schema similarity - Locate the exact or similar schemas that indicated that there might be similar data in them and then leverage other metadata and statistical methods to simplify the data and find necessary correlations.
  3. Entity Matching similarity - Detects when parts of files or tables are copied to another data asset. For example, an ETL that extracts only some columns from a table into a new table in a data warehouse. 

Another example would be if PII is found in a lower environment, Sentra could detect if this is real or mock customer PII, based on whether this PII was also found in the production environment.

PII found in a lower environment

Conclusion

Understanding and managing data sprawl are critical tasks in the dynamic business landscape. Monitoring data movement, access, and posture enable teams to comprehend the full impact of data sprawl, connecting the dots for security analysts in assessing true risks and threats. 

Sentra addresses the challenge of data movement by utilizing advanced methods like hash, schema, and entity similarity to identify duplicate or similar data across different locations. Sentra's holistic Data Security Posture Management (DSPM) solution not only enhances data security but also contributes to a streamlined data management strategy. 

The identified challenges and Sentra's robust methods emphasize the importance of proactive data management and security in the dynamic digital landscape.

To learn more about how you can enhance your data security posture, schedule a demo with one of our experts.

<blogcta-big>

Ran is a passionate product and customer success leader with over 12 years of experience in the cybersecurity sector. He combines extensive technical knowledge with a strong passion for product innovation, research and development (R&D), and customer success to deliver robust, user-centric security solutions. His leadership journey is marked by proven managerial skills, having spearheaded multidisciplinary teams towards achieving groundbreaking innovations and fostering a culture of excellence. He started at Sentra as a Senior Product Manager and is currently the Head of Technical Account Management, located in NYC.

Subscribe

Latest Blog Posts

Ofir Yehoshua
Ofir Yehoshua
November 17, 2025
4
Min Read

How to Gain Visibility and Control in Petabyte-Scale Data Scanning

How to Gain Visibility and Control in Petabyte-Scale Data Scanning

Every organization today is drowning in data - millions of assets spread across cloud platforms, on-premises systems, and an ever-expanding landscape of SaaS tools. Each asset carries value, but also risk. For security and compliance teams, the mandate is clear: sensitive data must be inventoried, managed and protected.

Scanning every asset for security and compliance is no longer optional, it’s the line between trust and exposure, between resilience and chaos.

Many data security tools promise to scan and classify sensitive information across environments. In practice, doing this effectively and at scale, demands more than raw ‘brute force’ scanning power. It requires robust visibility and management capabilities: a cockpit view that lets teams monitor coverage, prioritize intelligently, and strike the right balance between scan speed, cost, and accuracy.

Why Scan Tracking Is Crucial

Scanning is not instantaneous. Depending on the size and complexity of your environment, it can take days - sometimes even weeks to complete. Meanwhile, new data is constantly being created or modified, adding to the challenge.

Without clear visibility into the scanning process, organizations face several critical obstacles:

  • Unclear progress: It’s often difficult to know what has already been scanned, what is currently in progress, and what remains pending. This lack of clarity creates blind spots that undermine confidence in coverage.

  • Time estimation gaps: In large environments, it’s hard to know how long scans will take because so many factors come into play — the number of assets, their size, the type of data - structured, semi-structured, or unstructured, and how much scanner capacity is available. As a result, predicting when you’ll reach full coverage is tricky. This becomes especially stressful when scans need to be completed before a fixed deadline, like a compliance audit. 

    "With Sentra’s Scan Dashboard, we were able to quickly scale up our scanners to meet a tight audit deadline, finish on time, and then scale back down to save costs. The visibility and control it gave us made the whole process seamless”, said CISO of Large Retailer.
  • Poor prioritization: Not all environments or assets carry the same importance. Yet without visibility into scan status, teams struggle to balance historical scans of existing assets with the ongoing influx of newly created data, making it nearly impossible to prioritize effectively based on risk or business value.

Sentra’s End-to-End Scanning Workflow

Managing scans at petabyte scale is complex. Sentra streamlines the process with a workflow built for scale, clarity, and control that features:

1. Comprehensive Asset Discovery

Before scanning even begins, Sentra automatically discovers assets across cloud platforms, on-premises systems, and SaaS applications. This ensures teams have a complete, up-to-date inventory and visual map of their data landscape, so no environment or data store is overlooked.

Example: New S3 buckets, a freshly deployed BigQuery dataset, or a newly connected SharePoint site are automatically identified and added to the inventory.

Comprehensive Asset Discovery with Sentra

2. Configurable Scan Management

Administrators can fine-tune how scans are executed to meet their organization’s needs. With flexible configuration options, such as number of scanners, sampling rates, and prioritization rules - teams can strike the right balance between scan speed, coverage, and cost control.

For instance, compliance-critical assets can be scanned at full depth immediately, while less critical environments can run at reduced sampling to save on compute consumption and costs.

3. Real-Time Scan Dashboard

Sentra’s unified Scan Dashboard provides a cockpit view into scanning operations, so teams always know where they stand. Key features include:

  • Daily scan throughput correlated with the number of active scanners, helping teams understand efficiency and predict completion times.
  • Coverage tracking that visualizes overall progress and highlights which assets remain unscanned.
  • Decision-making tools that allow teams to dynamically adjust, whether by adding scanner capacity, changing sampling rates, or reordering priorities when new high-risk assets appear.
Real-Time Scan Dashboard with Sentra

Handling Data Changes

The challenge doesn’t end once the initial scans are complete. Data is dynamic, new files are added daily, existing records are updated, and sensitive information shifts locations. Sentra’s activity feeds give teams the visibility they need to understand how their data landscape is evolving and adapt their data security strategies in real time.


Conclusion

Tracking scan status at scale is complex but critical to any data security strategy. Sentra provides an end-to-end view and unmatched scan control, helping organizations move from uncertainty to confidence with clear prediction of scan timelines, faster troubleshooting, audit-ready compliance, and smarter, cost-efficient decisions for securing data.

<blogcta-big>

Read More
Ward Balcerzak
Ward Balcerzak
November 12, 2025
4
Min Read
Data Security

Best DSPM Tools: Top 9 Vendors Compared

Best DSPM Tools: Top 9 Vendors Compared

Enhanced DSPM Adoption Is the Most Important Data Security Trend of 2026

Over the past few years, organizations have realized that traditional security tools can’t keep pace with how data moves and grows today. Exploding volumes of sensitive data now flourish across multi-cloud environments, SaaS platforms, and AI systems, often without full visibility by the teams responsible for securing it. Unstructured data presents the greatest risk - representing over 80% of corporate data.

That’s why Data Security Posture Management (DSPM) has become a critical part of the modern security stack. DSPM tools help organizations automatically discover, classify, monitor, and protect sensitive data - no matter where it lives or travels.

But in 2026, the data security game is changing. Many DSPMs can tell you what your data is,  but more is needed. Leading DSPM platforms are going beyond visibility. They’re delivering real-time AI-enhanced contextual business insights, automated remediation, and AI-aware accurate protection that scales with your dynamic data.

AI-enhanced DSPM Capabilities in 2026

Not all DSPM tools are built the same. The top platforms share a few key traits that define the next generation of data security posture management:

Capability Why It Matters
Continuous discovery and classification at scale Real-time visibility into all sensitive data across cloud, SaaS, and on-prem systems. Efficiency, at petabyte scale, to allow for scanning frequency commensurate with business risk.
Contextual risk analysis Understanding what data is sensitive, who can access it, and how it’s being used. Understanding the business context around data so that appropriate actions can be taken.
Automated remediation Native capabilities and Integration with systems that correct risky configurations or excessive access automatically.
Integration and scalability Seamless connections to CSPM, SIEM, IAM, ITSM, and SOAR tools to unify data risk management and streamline workflows.
AI and model governance Capabilities to secure data used in GenAI agents, copilot assistants, and pipelines.

Top DSPM Tools to Watch in 2026

Based on recent analyst coverage, market growth, and innovation across the industry, here are the top DSPM platforms to watch this year, each contributing to how data security is evolving.

1. Sentra

As a cloud-native DSPM platform, Sentra focuses on continuous data protection, not just visibility. It discovers and accurately classifies sensitive data in real time across all cloud environments, while automatically remediating risks through policy-driven automation.

What sets Sentra apart:

  • Continuous, automated discovery and classification across your entire data estate - cloud, SaaS, and on-premises.
  • Business Contextual insights that understand the purpose of data, accurately linking data, identity, and risk.
  • Automatic learning to discern customer unique data types and continuously improve labeling over time.
  • Petabyte scaling and low compute consumption for 10X cost efficiency.
  • Automated remediation workflows and integrations to fix issues instantly.
  • Built-in coverage for data flowing through AI and SaaS ecosystems.

Ideal for: Security teams looking for a cloud-native DSPM platform built for scalability in the AI era with automation at its core.

2. BigID

A pioneer in data discovery and classification, BigID bridges DSPM and privacy governance, making it a good choice for compliance-heavy sectors.


Ideal for: Organizations prioritizing data privacy, governance, and audit readiness.

3. Prisma Cloud (Palo Alto Networks)

Prisma’s DSPM offering integrates closely with CSPM and CNAPP components, giving security teams a single pane of glass for infrastructure and data risk.


Ideal for: Enterprises with hybrid or multi-cloud infrastructures already using Palo Alto tools.

4. Microsoft Purview / Defender DSPM

Microsoft continues to invest heavily in DSPM through Purview, offering rich integration with Microsoft 365 and Azure ecosystems. Note: Sentra integrates with Microsoft Purview Information Protection (MPIP) labeling and DLP policies.

Ideal for: Microsoft-centric organizations seeking native data visibility and compliance automation.

5. Securiti.ai

Positioned as a “Data Command Center,” Securiti unifies DSPM, privacy, and governance. Its strength lies in automation and compliance visibility and SaaS coverage.


Ideal for: Enterprises looking for an all-in-one governance and DSPM solution.

6. Cyera

Cyera has gained attention for serving the SMB segment with its DSPM approach. It uses LLMs for data context, supplementing other classification methods, and provides integrations to IAM and other workflow tools.


Ideal for: Small/medium growing companies that need basic DSPM functionality.

7. Wiz

Wiz continues to lead in cloud security, having added DSPM capabilities into its CNAPP platform. They’re known for deep multi-cloud visibility and infrastructure misconfiguration detection.

Ideal for: Enterprises running complex cloud environments looking for infrastructure vulnerability and misconfiguration management.

8. Varonis

Varonis remains a strong player for hybrid and on-prem data security, with deep expertise in permissions and access analytics and focus on SaaS/unstructured data.


Ideal for: Enterprises with legacy file systems or mixed cloud/on-prem architectures.

9. Netwrix

Netwrix’s platform incorporates DSPM-related features into its auditing and access control suite.

Ideal for: Mid-sized organizations seeking DSPM as part of a broader compliance solution.

Emerging DSPM Trends to Watch in 2026

  1. AI Data Security: As enterprises adopt GenAI, DSPM tools are evolving to secure data used in training and inference.

  2. Identity-Centric Risk: Understanding and controlling both human and machine identities is now central to data posture.

  3. Automation-Driven Security: Remediation workflows are becoming the differentiator between “good” and “great.”

Market Consolidation: Expect to see CNAPP, legacy security, and cloud vendors acquiring DSPM startups to strengthen their coverage.

How to Choose the Right DSPM Tool

When evaluating a DSPM solution, align your choice with your data landscape and goals:

  • Cloud-Native Company Choose tools designed for cloud-first environments (like Sentra, Securiti, Wiz).
  • Compliance Priority Platforms like Sentra, BigID or Securiti excel in privacy and governance.
  • Microsoft-Heavy Stack Purview and Sentra DSPM offer native integration.
  • Hybrid Environment Consider Varonis, Prisma Cloud, or Sentra for extended visibility.
  • Enterprise Scalability Evaluate deployment ease, petabyte scalability, cloud resource consumption, scanning efficiency, etc. (Sentra excels here)

*Pro Tip: Run a proof of concept (POC) across multiple environments to test scalability, accuracy, and operational cost effectiveness before full deployment.

Final Thoughts: DSPM Is About Action

The best DSPM tools in 2026 share one core principle, they help organizations move from visibility to action.

At Sentra, we believe that the future of DSPM lies in continuous, automated data protection:

  • Real-time discovery of sensitive data @ scale
  • Context-aware prioritization for business insight
  • Automated remediation that reduces risk instantly

As data continues to power AI, analytics, and innovation, DSPM ensures that innovation never comes at the cost of security. See how Sentra helps leading enterprises protect data across multi-cloud and SaaS environments.

<blogcta-big>

Read More
Gilad Golani
Gilad Golani
November 6, 2025
4
Min Read

How SLMs (Small Language Models) Make Sentra’s AI Faster and More Accurate

How SLMs (Small Language Models) Make Sentra’s AI Faster and More Accurate

The LLM Hype, and What’s Missing

Over the past few years, large language models (LLMs) have dominated the AI conversation. From writing essays to generating code, LLMs like GPT-4 and Claude have proven that massive models can produce human-like language and reasoning at scale.

But here's the catch: not every task needs a 70-billion-parameter model. Parameters are computationally expensive - they require both memory and processing time.

At Sentra, we discovered early on that the work our customers rely on for accurate, scalable classification of massive data flows - isn’t about writing essays or generating text. It’s about making decisions fast, reliably, and cost-effectively across dynamic, real-world data environments. While large language models (LLMs) are excellent at solving general problems, it creates a lot of unnecessary computational overhead.

That’s why we’ve shifted our focus toward Small Language Models (SLMs) - compact, specialized models purpose-built for a single task - understanding and classifying data efficiently. By running hundreds of SLMs in parallel on regular CPUs, Sentra can deliver faster insights, stronger data privacy, and a dramatically lower total cost of AI-based classification that scales with their business, not their cloud bill.

What Is an SLM?

An SLM is a smaller, domain-specific version of a language model. Instead of trying to understand and generate any kind of text, an SLM is trained to excel at a particular task, such as identifying the topic of a document (what the document is about or what type of document it is), or detecting sensitive entities within documents, such as passwords, social security numbers, or other forms of PII.

In other words: If an LLM is a generalist, an SLM is a specialist. At Sentra, we use SLMs that are tuned and optimized for security data classification, allowing them to process high volumes of content with remarkable speed, consistency, and precision. These SLMs are based on standard open source models, but trained with data that was curated by Sentra, to achieve the level of accuracy that only Sentra can guarantee.

From LLMs to SLMs: A Strategic Evolution

Like many in the industry, we started by testing LLMs to see how well they could classify and label data. They were powerful, but also slow, expensive, and difficult to scale. Over time, it became clear: LLMs are too big and too expensive to run on customer data for Sentra to be a viable, cost effective solution for data classification.

Each SLM handles a focused part of the process: initial categorization, text extraction from documents and images, and sensitive entity classification. The SLMs are not only accurate (even more accurate than LLMs classifying using prompts) - they can run on standard CPUs efficiently, and they run inside the customer’s environment, as part of Sentra’s scanners.

The Benefits of SLMs for Customers

a. Speed and Efficiency

SLMs process data faster because they’re lean by design. They don’t waste cycles generating full sentences or reasoning across irrelevant contexts. This means real-time or near-real-time classification, even across millions of data points.

b. Accuracy and Adaptability

SLMs are pre-trained “zero-shot” language models that can categorize and classify generically, without the need to pre-train on a specific task in advance. This is the meaning of “zero shot” - it means that regardless of the data it was trained on, the model can classify an arbitrary set of entities and document labels without training on each one specifically. This is possible due to the fact that language models are very advanced, and they are able to capture deep natural language understanding at the training stage.

Regardless of that, Sentra fine tunes these models to further increase the accuracy of the classification, by curating a very large set of tagged data that resembles the type of data that our customers usually run into.

Our feedback loops ensure that model performance only gets better over time - a direct reflection of our customers’ evolving environments.

c. Cost and Sustainability

Because SLMs are compact, they require less compute power, which means lower operational costs and a smaller carbon footprint. This efficiency allows us to deliver powerful AI capabilities to customers without passing on the heavy infrastructure costs of running massive models.

d. Security and Control

Unlike LLMs hosted on external APIs, SLMs can be run within Sentra’s secure environment, preserving data privacy and regulatory compliance. Customers maintain full control over their sensitive information - a critical requirement in enterprise data security.

A Quick Comparison: SLMs vs. LLMs

The difference between SLMs and LLMs becomes clear when you look at their performance across key dimensions:

Factor SLMs LLMs
Speed Fast, optimized for classification throughput Slower and more compute-intensive for large-scale inference
Cost Cost-efficient Expensive to run at scale
Accuracy (for simple tasks) Optimized for classification Comparable but unnecessary overhead
Deployment Lightweight, easy to integrate Complex and resource-heavy
Adaptability (with feedback) Continuously fine-tuned, ability to fine tune per customer Harder to customize, fine-tuning costly
Best Use Case Classification, tagging, filtering Reasoning and analysis, generation, synthesis

Continuous Learning: How Sentra’s SLMs Grow

One of the most powerful aspects of our SLM approach is continuous learning. Each Sentra customer project contributes valuable insights, from new data patterns to evolving classification needs. These learnings feed back into our training workflows, helping us refine and expand our models over time.

While not every model retrains automatically, the system is built to support iterative optimization: as our team analyzes feedback and performance, models can be fine-tuned or extended to handle new categories and contexts.

The result is an adaptive ecosystem of SLMs that becomes more effective as our customer base and data diversity grow, ensuring Sentra’s AI remains aligned with real-world use cases.

Sentra’s Multi-SLM Architecture

Sentra’s scanning technology doesn’t rely on a single model. We run many SLMs in parallel, each specializing in a distinct layer of classification:

  1. Embedding models that convert data into meaningful vector representations
  2. Entity Classification models that label sensitive entities
  3. Document Classification models that label documents by type
  4. Image-to-text and speech-to-text models that are able to process non-textual data into textual data

This layered approach allows us to operate at scale - quickly, cheaply, and with great results. In practice, that means faster insights, fewer errors, and a more responsive platform for every customer.

The Future of AI Is Specialized

We believe the next frontier of AI isn’t about who can build the biggest model, it’s about who can build the most efficient, adaptive, and secure ones.

By embracing SLMs, Sentra is pioneering a future where AI systems are purpose-built, transparent, and sustainable. Our approach aligns with a broader industry shift toward task-optimized intelligence - models that do one thing extremely well and can learn continuously over time.

Conclusion: The Power of Small

At Sentra, we’ve learned that in AI, bigger isn’t always better. Our commitment to SLMs reflects our belief that efficiency, adaptability, and precision matter most for customers. By running thousands of small, smart models rather than a single massive one, we’re able to classify data faster, cheaper, and with greater accuracy - all while ensuring customer privacy and control.

In short: Sentra’s SLMs represent the power of small, and the future of intelligent classification.

<blogcta-big>

Read More
decorative ball
Expert Data Security Insights Straight to Your Inbox
What Should I Do Now:
1

Get the latest GigaOm DSPM Radar report - see why Sentra was named a Leader and Fast Mover in data security. Download now and stay ahead on securing sensitive data.

2

Sign up for a demo and learn how Sentra’s data security platform can uncover hidden risks, simplify compliance, and safeguard your sensitive data.

3

Follow us on LinkedIn, X (Twitter), and YouTube for actionable expert insights on how to strengthen your data security, build a successful DSPM program, and more!

Before you go...

Get the Gartner Customers' Choice for DSPM Report

Read why 98% of users recommend Sentra.

Gartner Certificate for Sentra