All Resources
In this article:
minus iconplus icon
Share the Blog

Understanding Data Movement to Avert Proliferation Risks

April 10, 2024
4
Min Read
Data Sprawl

Understanding the perils your cloud data faces as it proliferates throughout your organization and ecosystems is a monumental task in the highly dynamic business climate we operate in. Being able to see data as it is being copied and travels, monitor its activity and access, and assess its posture allows teams to understand and better manage the full effect of data sprawl.

 

It ‘connects the dots’ for security analysts who must continually evaluate true risks and threats to data so they can prioritize their efforts. Data similarity and movement are important behavioral indicators in assessing and addressing those risks. This blog will explore this topic in depth.

What Is Data Movement

Data movement is the process of transferring data from one location or system to another – from A to B. This transfer can be between storage locations, databases, servers, or network locations. Copying data from one location to another is simple, however, data movement can get complicated when managing volume, velocity, and variety.

  • Volume: Handling large amounts of data.
  • Velocity: Overseeing the pace of data generation and processing.
  • Variety: Managing a variety of data types.

How Data Moves in the Cloud

Data is free and can be shared anywhere. The way organizations leverage data is an integral part of their success. Although there are many business benefits to moving and sharing data (at a rapid pace), there are also many concerns that arise, mainly dealing with privacy, compliance, and security. Data needs to move quickly, securely, and have the proper security posture at all times.  

These are the main ways that data moves in the cloud:

1. Data Distribution in Internal Services: Internal services and applications manage data, saving it across various locations and data stores.

2. ETLs: Extract, Transform, Load processes, involve combining data from multiple sources into a central repository known as a data warehouse. This centralized view supports applications in aggregating diverse data points for organizational use.

3. Developer and Data Scientist Data Usage: Developers and data scientists utilize data for testing and development purposes. They require both real and synthetic data to test applications and simulate real-life scenarios to drive business outcomes.

4. AI/ML/LLM and Customer Data Integration: The utilization of customer data in AI/ML learning processes is on the rise. Organizations leverage such data to train models and apply the results across various organizational units, catering to different use-cases.

What Is Misplaced Data

"Misplaced data" refers to data that has been moved from an approved environment to an unapproved environment. For example, a folder that is stored in the wrong location within a computer system or network. This can result from human error, technical glitches, or issues with data management processes.

 

When unauthorized data is stored in an environment that is not designed for the type of data, it can lead to data leaks, security breaches, compliance violations, and other negative outcomes.

With companies adopting more cloud services, and being challenged with properly managing the subsequent data sprawl, having misplaced data is becoming more common, which can lead to security, privacy, and compliance issues.

The Challenge of Data Movement and Misplaced Data

Organizations strive to secure their sensitive data by keeping it within carefully defined and secure environments. The pervasive data sprawl faced by nearly every organization in the cloud makes it challenging to effectively protect data, given its rapid multiplication and movement.

It is encouraged for business productivity to leverage data and use it for various purposes that can help enhance and grow the business. However, with the advantages, come disadvantages. There are risks to having multiple owners and duplicate data..

To address this challenge, organizations can leverage the analysis of similar data patterns to gain a comprehensive understanding on how data flows within the organization and help security teams first get visibility of those movement patterns, and then identify whether this movement is authorized. Then they can protect it accordingly and understand which unauthorized movement should be blocked.

This proactive approach allows them to position themselves strategically. It can involve ensuring robust security measures for data at each location, re-confining it by relocating, or eliminating unnecessary duplicates. Additionally, this analytical capability proves valuable in scenarios tied to regulatory and compliance requirements, such as ensuring GDPR - compliant data residency.

 Identifying Redundant Data and Saving Cloud Storage Costs

The identification of similarities empowers Chief Information Security Officers (CISOs) to implement best practices, steering clear of actions that lead to the creation of redundant data.

Detecting redundant data helps reduce cloud storage costs and drive up operational efficiency from targeted and prioritized remediation efforts that focus on the critical data risks that matter. 

This not only enhances data security posture, but also contributes to a more streamlined and efficient data management strategy.

“Sentra has helped us to reduce our risk of data breaches and to save money on cloud storage costs.”

-Benny Bloch, CISO at Global-e

Security Concerns That Arise

  1. Data Security Posture Variations Across Locations: Addressing instances where similar data, initially secure, experiences a degradation in security posture during the copying process (e.g., transitioning from private to public, or from encrypted to unencrypted).
  1. Divergent Access Profiles for Similar Data: Exploring scenarios where data, previously accessible by a limited and regulated set of identities, now faces expanded access by a larger number of identities (users), resulting in a loss of control.
  1. Data Localization and Compliance Violations: Examining situations where data, mandated to be localized in specific regions, is found to be in violation of organizational policies or compliance rules (with GDPR as a prominent example). By identifying similar sensitive data, we can pinpoint these issues and help users mitigate them.
  1. Anonymization Challenges in ETL Processes: Identifying issues in ETL processes where data is not only moved but also anonymized. Pinpointing similar sensitive data allows users to detect and mitigate anonymization-related problems.
  1. Customer Data Migration Across Environments: Analyzing the movement of customer data from production to development environments. This can be used by engineers to test real-life use-cases.
  2. Data Data Democratization and Movement Between Cloud and Personal Stores: Investigating instances where users export data from organizational cloud stores to personal drives (e.g., OneDrive) for purposes of development, testing, or further business analysis. Once this data is moved to personal data stores, it typically is less secure. This is due to the fact that these personal drives are less monitored and protected, and in control of the private entity (the employee), as opposed to the security/dev teams. These personal drives may be susceptible to security issues arising from misconfiguration, user mistakes or insufficient knowledge.

How Sentra’s DSPM Helps Navigate Data Movement Challenges

  1. Discover and accurately classify the most sensitive data and provide extensive context about it, for example:
  • Where it lives
  • Where it has been copied or moved to
  • Who has access to it
  1. Highlight misconfigurations by correlating similar data that has different security posture. This helps you pinpoint the issue and adjust it according to the right posture.
  2. Quickly identify compliance violations, such as GDPR - when European customer data moves outside of the allowed region, or when financial data moves outside a PCI compliant environment.
  3. Identify access changes, which helps you to understand the correct access profile by correlating similar data pieces that have different access profiles.

For example, the same data is well kept in a specific environment and can be accessed by 2 very specific users. When the same data moves to a developers environment, it can then be accessed by the whole data engineering team, which exposes more risks.

Leveraging Data Security Posture Management (DSPM) and Data Detection and Response (DDR) tools proves instrumental in addressing the complexities of data movement challenges. These tools play a crucial role in monitoring the flow of sensitive data, allowing for the swift remediation of exposure incidents and vulnerabilities in real-time. The intricacies of data movement, especially in hybrid and multi-cloud deployments, can be challenging, as public cloud providers often lack sufficient tooling to comprehend data flows across various services and unmanaged databases.

 

Our innovative cloud DLP tooling takes the lead in this scenario, offering a unified approach by integrating static and dynamic monitoring through DSPM and DDR. This integration provides a comprehensive view of sensitive data within your cloud account, offering an updated inventory and mapping of data flows. Our agentless solution automatically detects new sensitive records, classifies them, and identifies relevant policies. In case of a policy violation, it promptly alerts your security team in real time, safeguarding your crucial data assets.

In addition to our robust data identification methods, we prioritize the implementation of access control measures. This involves establishing Role-based Access Control (RBAC) and Attribute-based Access Control (ABAC) policies, so that the right users have permissions at the right times.

Identifying data movement with Sentra

Identifying Data Movement With Sentra

Sentra has developed different methods to identify data movements and similarities based on the content of two assets. Our advanced capabilities allow us to pinpoint fully duplicated data, identify similar data, and even uncover instances of partially duplicated data that may have been copied or moved across different locations. 

Moreover, we recognize that changes in access often accompany the relocation of assets between different locations. 

As part of Sentra’s Data Security Posture Management (DSPM) solution, we proactively manage and adapt access controls to accommodate these transitions, maintaining the integrity and security of the data throughout its lifecycle.

These are the 3 methods we are leveraging:

  1. Hash similarity - Using each asset unique identifier to locate it across the different data stores of the customer environment.
  2. Schema similarity - Locate the exact or similar schemas that indicated that there might be similar data in them and then leverage other metadata and statistical methods to simplify the data and find necessary correlations.
  3. Entity Matching similarity - Detects when parts of files or tables are copied to another data asset. For example, an ETL that extracts only some columns from a table into a new table in a data warehouse. 

Another example would be if PII is found in a lower environment, Sentra could detect if this is real or mock customer PII, based on whether this PII was also found in the production environment.

PII found in a lower environment

Conclusion

Understanding and managing data sprawl are critical tasks in the dynamic business landscape. Monitoring data movement, access, and posture enable teams to comprehend the full impact of data sprawl, connecting the dots for security analysts in assessing true risks and threats. 

Sentra addresses the challenge of data movement by utilizing advanced methods like hash, schema, and entity similarity to identify duplicate or similar data across different locations. Sentra's holistic Data Security Posture Management (DSPM) solution not only enhances data security but also contributes to a streamlined data management strategy. 

The identified challenges and Sentra's robust methods emphasize the importance of proactive data management and security in the dynamic digital landscape.

To learn more about how you can enhance your data security posture, schedule a demo with one of our experts.

<blogcta-big>

Ran is a passionate product and customer success leader with over 12 years of experience in the cybersecurity sector. He combines extensive technical knowledge with a strong passion for product innovation, research and development (R&D), and customer success to deliver robust, user-centric security solutions. His leadership journey is marked by proven managerial skills, having spearheaded multidisciplinary teams towards achieving groundbreaking innovations and fostering a culture of excellence. He started at Sentra as a Senior Product Manager and is currently the Head of Technical Account Management, located in NYC.

Subscribe

Latest Blog Posts

Ariel Rimon
Ariel Rimon
Daniel Suissa
Daniel Suissa
February 16, 2026
4
Min Read

How Modern Data Security Discovers Sensitive Data at Cloud Scale

How Modern Data Security Discovers Sensitive Data at Cloud Scale

Modern cloud environments contain vast amounts of data stored in object storage services such as Amazon S3, Google Cloud Storage, and Azure Blob Storage. In large organizations, a single data store can contain billions (or even tens of billions) of objects. In this reality, traditional approaches that rely on scanning every file to detect sensitive data quickly become impractical.

Full object-level inspection is expensive, slow, and difficult to sustain over time. It increases cloud costs, extends onboarding timelines, and often fails to keep pace with continuously changing data. As a result, modern data security platforms must adopt more intelligent techniques to build accurate data inventories and sensitivity models without scanning every object.

Why Object-Level Scanning Fails at Scale

Object storage systems expose data as individual objects, but treating each object as an independent unit of analysis does not reflect how data is actually created, stored, or used.

In large environments, scanning every object introduces several challenges:

  • Cost amplification from repeated content inspection at massive scale
  • Long time to actionable insights during the first scan
  • Operational bottlenecks that prevent continuous scanning
  • Diminishing returns, as many objects contain redundant or structurally identical data

The goal of data discovery is not exhaustive inspection, but rather accurate understanding of where sensitive data exists and how it is organized.

The Dataset as the Correct Unit of Analysis

Although cloud storage presents data as individual objects, most data is logically organized into datasets. These datasets often follow consistent structural patterns such as:

  • Time-based partitions
  • Application or service-specific logs
  • Data lake tables and exports
  • Periodic reports or snapshots

For example, the following objects are separate files but collectively represent a single dataset:

logs/2026/01/01/app_events_001.json

logs/2026/01/02/app_events_002.json

logs/2026/01/03/app_events_003.json

While these objects differ by date, their structure, schema, and sensitivity characteristics are typically consistent. Treating them as a single dataset enables more accurate and scalable analysis.

Analyzing Storage Structure Without Reading Every File

Modern data discovery platforms begin by analyzing storage metadata and object structure, rather than file contents.

This includes examining:

  • Object paths and prefixes
  • Naming conventions and partition keys
  • Repeating directory patterns
  • Object counts and distribution

By identifying recurring patterns and natural boundaries in storage layouts, platforms can infer how objects relate to one another and where dataset boundaries exist. This analysis does not require reading object contents and can be performed efficiently at cloud scale.

Configurable by Design

Sampling can be disabled for specific data sources, and the dataset grouping algorithm can be adjusted by the user. This allows teams to tailor the discovery process to their environment and needs.


Automatic Grouping into Dataset-Level Assets

Using structural analysis, objects are automatically grouped into dataset-level assets. Clustering algorithms identify related objects based on path similarity, partitioning schemes, and organizational patterns. This process requires no manual configuration and adapts as new objects are added. Once grouped, these datasets become the primary unit for further analysis, replacing object-by-object inspection with a more meaningful abstraction.

Representative Sampling for Sensitivity Inference

After grouping, sensitivity analysis is performed using representative sampling. Instead of inspecting every object, the platform selects a small, statistically meaningful subset of files from each dataset.

Sampling strategies account for factors such as:

  • Partition structure
  • File size and format
  • Schema variation within the dataset

By analyzing these samples, the platform can accurately infer the presence of sensitive data across the entire dataset. This approach preserves accuracy while dramatically reducing the amount of data that must be scanned.

Handling Non-Standard Storage Layouts

In some environments, storage layouts may follow unconventional or highly customized naming schemes that automated grouping cannot fully interpret. In these cases, manual grouping provides additional precision. Security analysts can define logical dataset boundaries, often supported by LLM-assisted analysis to better understand complex or ambiguous structures. Once defined, the same sampling and inference mechanisms are applied, ensuring consistent sensitivity assessment even in edge cases.

Scalability, Cost, and Operational Impact

By combining structural analysis, grouping, and representative sampling, this approach enables:

  • Scalable data discovery across millions or billions of objects
  • Predictable and significantly reduced cloud scanning costs
  • Faster onboarding and continuous visibility as data changes
  • High confidence sensitivity models without exhaustive inspection

This model aligns with the realities of modern cloud environments, where data volume and velocity continue to increase.

From Discovery to Classification and Continuous Risk Management

Dataset-level asset discovery forms the foundation for scalable classification, access governance, and risk detection. Once assets are defined at the dataset level, classification becomes more accurate and easier to maintain over time. This enables downstream use cases such as identifying over-permissioned access, detecting risky data exposure, and managing AI-driven data access patterns.

Applying These Principles in Practice

Platforms like Sentra apply these principles to help organizations discover, classify, and govern sensitive data at cloud scale - without relying on full object-level scans. By focusing on dataset-level discovery and intelligent sampling, Sentra enables continuous visibility into sensitive data while keeping costs and operational overhead under control.

<blogcta-big>

Read More
Elie Perelman
Elie Perelman
February 13, 2026
3
Min Read

Best Data Access Governance Tools

Best Data Access Governance Tools

Managing access to sensitive information is becoming one of the most critical challenges for organizations in 2026. As data sprawls across cloud platforms, SaaS applications, and on-premises systems, enterprises face compliance violations, security breaches, and operational inefficiencies. Data Access Governance Tools provide automated discovery, classification, and access control capabilities that ensure only authorized users interact with sensitive data. This article examines the leading platforms, essential features, and implementation strategies for effective data access governance.

Best Data Access Governance Tools

The market offers several categories of solutions, each addressing different aspects of data access governance. Enterprise platforms like Collibra, Informatica Cloud Data Governance, and Atlan deliver comprehensive metadata management, automated workflows, and detailed data lineage tracking across complex data estates.

Specialized Data Access Governance (DAG) platforms focus on permissions and entitlements. Varonis, Immuta, and Securiti provide continuous permission mapping, risk analytics, and automated access reviews. Varonis identifies toxic combinations by discovering and classifying sensitive data, then correlating classifications with access controls to flag scenarios where high-sensitivity files have overly broad permissions.

User Reviews and Feedback

Varonis

  • Detailed file access analysis and real-time protection capabilities
  • Excellent at identifying toxic permission combinations
  • Learning curve during initial implementation

BigID

  • AI-powered classification with over 95% accuracy
  • Handles both structured and unstructured data effectively
  • Strong privacy automation features
  • Technical support response times could be improved

OneTrust

  • User-friendly interface and comprehensive privacy management
  • Deep integration into compliance frameworks
  • Robust feature set requires organizational support to fully leverage

Sentra

  • Effective data discovery and automation capabilities (January 2026 reviews)
  • Significantly enhances security posture and streamlines audit processes
  • Reduces cloud storage costs by approximately 20%

Critical Capabilities for Modern Data Access Governance

Effective platforms must deliver several core capabilities to address today's challenges:

Unified Visibility

Tools need comprehensive visibility across IaaS, PaaS, SaaS, and on-premises environments without moving data from its original location. This "in-environment" architecture ensures data never leaves organizational control while enabling complete governance.

Dynamic Data Movement Tracking

Advanced platforms monitor when sensitive assets flow between regions, migrate from production to development, or enter AI pipelines. This goes beyond static location mapping to provide real-time visibility into data transformations and transfers.

Automated Classification

Modern tools leverage AI and machine learning to identify sensitive data with high accuracy, then apply appropriate tags that drive downstream policy enforcement. Deep integration with native cloud security tools, particularly Microsoft Purview, enables seamless policy enforcement.

Toxic Combination Detection

Platforms must correlate data sensitivity with access permissions to identify scenarios where highly sensitive information has broad or misconfigured controls. Once detected, systems should provide remediation guidance or trigger automated actions.

Infrastructure and Integration Considerations

Deployment architecture significantly impacts governance effectiveness. Agentless solutions connecting via cloud provider APIs offer zero impact on production latency and simplified deployment. Some platforms use hybrid approaches combining agentless scanning with lightweight collectors when additional visibility is required.

Integration Area Key Considerations Example Capabilities
Microsoft Ecosystem Native integration with Microsoft Purview, Microsoft 365, and Azure Varonis monitors Copilot AI prompts and enforces consistent policies
Data Platforms Direct remediation within platforms such as Snowflake BigID automatically enforces dynamic data masking and tagging
Cloud Providers API-based scanning without performance overhead Sentra’s agentless architecture scans environments without deploying agents

Open Source Data Governance Tools

Organizations seeking cost-effective or customizable solutions can leverage open source tools. Apache Atlas, originally designed for Hadoop environments, provides mature governance capabilities that, when integrated with Apache Ranger, support tag-based policy management for flexible access control.

DataHub, developed at LinkedIn, features AI-powered metadata ingestion and role-based access control. OpenMetadata offers a unified metadata platform consolidating information across data sources with data lineage tracking and customized workflows.

While open source tools provide foundational capabilities, metadata cataloging, data lineage tracking, and basic access controls, achieving enterprise-grade governance typically requires additional customization, integration work, and infrastructure investment. The software is free, but self-hosting means accounting for operational costs and expertise needed to maintain these platforms.

Understanding the Gartner Magic Quadrant for Data Governance Tools

Gartner's Magic Quadrant assesses vendors on ability to execute and completeness of vision. For data access governance, Gartner examines how effectively platforms define, automate, and enforce policies controlling user access to data.

<blogcta-big>

Read More
Gilad Golani
Gilad Golani
David Stuart
David Stuart
February 12, 2026
4
Min Read

How to Supercharge Microsoft Purview DLP and Make Copilot Safe by Fixing Labels at the Source

How to Supercharge Microsoft Purview DLP and Make Copilot Safe by Fixing Labels at the Source

For organizations invested in Microsoft 365, Purview and Copilot now sit at the center of both data protection and productivity. Purview offers rich DLP capabilities, along with sensitivity labels that drive encryption, retention, and policy. Copilot promises to unlock new value from content in SharePoint, OneDrive, Teams, and other services.

But there is a catch. Both Purview DLP and Copilot depend heavily on labels and correct classification.

If labels are missing, wrong, or inconsistent, then:

  • DLP rules fire in the wrong places (creating false positives) or miss critical data (worse!).
  • Copilot accesses content you never intended it to see and can inadvertently surface it in responses.

In many environments, that’s exactly what’s happening. Labels are applied manually. Legacy content, exports from non‑Microsoft systems, and AI‑ready datasets live side by side with little or no consistent tagging. Purview has powerful controls, it just doesn’t always have the accurate inputs it needs.

The fastest way to boost performance of Purview DLP and make Copilot safe is to fix labels at the source using a DSPM platform, then let Microsoft’s native controls do the work they’re already good at.

The limits of M365‑only classification

Purview’s built-in classifiers understand certain patterns and can infer sensitivity from content inside the Microsoft 365 estate. That can be useful, but it doesn’t solve two big problems.

First, PHI, PCI, PII, and IP often originate in systems outside of M365; core banking platforms, claims systems, Snowflake, Databricks, and third‑party SaaS applications. When that data is exported or synced into SharePoint, OneDrive, or Teams, it often arrives without accurate labels.

Second, even within M365, there are years of accumulated documents, emails, and chat history that have never been systematically classified. Applying labels retroactively is time‑consuming and error‑prone if you rely on manual tagging or narrow content rules. And once there, without contextual analysis and deeper understanding of the unstructured files in which the data lives, it becomes extremely difficult to apply precise sensitivity labels.When you add Copilot (or any AI agent/assistant) into the mix, any mislabeling or blind spots in classification can quickly turn into AI‑driven data exposure. The stakes are higher, and so is the need for a more robust foundation.

Using DSPM to fix labels at the source

A DSPM platform like Sentra plugs into your environment at a different layer. It connects not just to Microsoft 365, but also to cloud providers, data warehouses, SaaS applications, collaboration tools, and AI platforms. It then builds a cross‑environment view of where sensitive data lives and what it contains, based on multi‑signal, AI‑assisted classification that’s tuned to your business context.

Once it has that view, Sentra can automatically apply or correct Microsoft Purview Information Protection (MPIP) labels across M365 content and, where appropriate, back into other systems. Instead of relying on spotty manual tagging and local heuristics, you get labels that reflect a consistent, enterprise‑wide understanding of sensitivity.

Supercharging Microsoft Purview DLP with Sentra



Those labels become the language that Purview DLP, encryption, retention, and Copilot controls understand. You are effectively giving Microsoft’s native tools a richer, more accurate map of your data, enabling them to confidently apply appropriate controls and streamline remediations.

Making Purview DLP work smarter

When labels are trustworthy, Purview DLP policies become easier to design and maintain. Rather than creating sprawling rule sets that combine patterns, locations, and exceptions, you can express policies in simple, label‑centric terms:

  • “Encrypt and allow PHI sent to approved partners; block PHI sent anywhere else.”
  • “Block Highly Confidential documents shared with external accounts; prompt for justification when Internal documents leave the tenant.”

DSPM’s role is to ensure that content carrying PHI or other regulated data is actually labeled as such, whether it started life in M365 or came from elsewhere. Purview then enforces DLP based on those labels, with far fewer false positives and far fewer edge cases. During rollout, you can run new label‑driven policies in audit mode to observe how they would behave, work with business stakeholders to adjust where necessary, and then move the most critical rules into full enforcement.

Keeping Copilot inside the guardrails

Copilot adds another dimension to this story. By design, it reads and reasons over large swaths of your content, then generates responses or summaries based on that content. If you don’t control what Copilot can see, it may surface PHI in a chat about scheduling, or include sensitive IP in a generic project update.

Here again, labels should be the control plane. Once DSPM has ensured that sensitive content is labeled accurately and consistently, you can use those labels to govern Copilot:

  • Limit Copilot’s access to certain labels or sites, especially those holding PHI, PCI, or trade secrets.
  • Restrict certain operations (such as summarization or sharing) when output would be based on Highly Confidential content.
  • Exclude specific labeled datasets from Copilot’s index entirely.

Because DSPM also tracks where labeled data moves, it can alert you when sensitive content is copied into a location with different Copilot rules. That gives you an opportunity to remediate before an incident, rather than discovering the issue only after a problematic AI response.

A practical path for Microsoft‑centric organizations

For organizations that have standardized on Microsoft 365, the message is not “replace Purview” or “turn off Copilot.” It’s to recognize that Purview and Copilot need a stronger foundation of data intelligence to act safely and predictably.

That foundation comes from pairing DSPM and auto‑labeling with Purview’s native capabilities, which combined enable you to:

  1. Discover and classify sensitive data across your full estate, including non‑Microsoft sources.
  2. Auto‑apply MPIP labels so that M365 content is tagged accurately and consistently.
  3. Simplify DLP and Copilot policies to be label‑driven rather than pattern‑driven.
  4. Iterate in audit mode before expanding enforcement.

Once labels are fixed at the source, you can lean on Purview DLP and Copilot with much more confidence. You’ll spend less time chasing noisy alerts and unexpected AI behavior, and more time using the Microsoft ecosystem the way it was intended: as a powerful, integrated platform for secure productivity.

Ready to supercharge Purview DLP and make M365 Copilot safe by fixing labels at the source? Schedule a Sentra demo.

<blogcta-big>

Read More
Expert Data Security Insights Straight to Your Inbox
What Should I Do Now:
1

Get the latest GigaOm DSPM Radar report - see why Sentra was named a Leader and Fast Mover in data security. Download now and stay ahead on securing sensitive data.

2

Sign up for a demo and learn how Sentra’s data security platform can uncover hidden risks, simplify compliance, and safeguard your sensitive data.

3

Follow us on LinkedIn, X (Twitter), and YouTube for actionable expert insights on how to strengthen your data security, build a successful DSPM program, and more!

Before you go...

Get the Gartner Customers' Choice for DSPM Report

Read why 98% of users recommend Sentra.

White Gartner Peer Insights Customers' Choice 2025 badge with laurel leaves inside a speech bubble.