All Resources
In this article:
minus iconplus icon
Share the Article

What is Sensitive Data Exposure and How to Prevent It

January 1, 2024
6
 Min Read
Data Security

What is Sensitive Data Exposure?

Sensitive data exposure occurs when security measures fail to protect sensitive information from external and internal threats. This leads to unauthorized disclosure of private and confidential data. Attackers often target personal data, such as financial information and healthcare records, as it is valuable and exploitable.

Security teams play a critical role in mitigating sensitive data exposures. They do this by implementing robust security measures. This includes eliminating malicious software, enforcing strong encryption standards, and enhancing access controls. Yet, even with the most sophisticated security measures in place, data breaches can still occur. They often happen through the weakest links in the system.

Organizations must focus on proactive measures to prevent data exposures. They should also put in place responsive strategies to effectively address breaches. By combining proactive and responsive measures, as stated below, organizations can protect sensitive data exposure. They can also maintain the trust of their customers.

Proactive Measures Responsive Strategies
Implementation of appropriate security posture controls for sensitive data, such as encryption, data masking, de-identification, etc. Security audits with patch management ensure the masking of affected data to minimize the attack surface and eradicate threats.
Sensitive data access restrictions through least privilege principles enforcement. Promptly identifying and reacting through incident response systems with adequate alerting.
Enablement of comprehensive logging mechanisms to capture and monitor activities on sensitive data. Investigating the root cause of the breach to prevent similar incidents from occurring in the future.
Alignment with cyber protection regulations and compliance requirements through adherence to strict cyber policies. Implementing additional custom security measures to strengthen the overall security posture.

Difference Between Data Exposure and Data Breach

Both data exposure and data breaches involve unauthorized access or disclosure of sensitive information. However, they differ in their intent and the underlying circumstances.

Data Exposure

Data exposure occurs when sensitive information is inadvertently disclosed or made accessible to unauthorized individuals or entities. This exposure can happen due to various factors. These include misconfigured systems, human error, or inadequate security measures. Data exposure is typically unintentional. The exposed data may not be actively targeted or exploited.

Data Breach

A data breach, on the other hand, is a deliberate act of unauthorized access to sensitive information with the intent to steal, manipulate, or exploit it. Data breaches are often carried out by cybercriminals or malicious actors seeking financial gain, identity theft, or to disrupt an organization's operations.

Key Differences

The table below summarizes the key differences between sensitive data exposure and data breaches:

Features Data Exposure Data Breach
Intent Unintentional Intentional
Underlying Factor Human error, misconfigured systems, inadequate security Deliberate attacks by cybercriminals or malicious actors
Impact Can still lead to privacy violations and reputational damage Often more severe impacts, including fraud and financial losses, identity theft, and disruption of operations
Solutions Following security best practices, continuous monitoring and SecOps literacy Robust security measures with discrete monitoring and alerting for anomaly detection and remediation

Types of Sensitive Data Exposure

Attackers relentlessly pursue sensitive data. They create increasingly sophisticated and inventive methods to breach security systems and compromise valuable information. Their motives range from financial gain to disruption of operations. Ultimately, this causes harm to individuals and organizations alike. There are three main types of data breaches that can compromise sensitive information:

Availability Breach

An availability breach occurs when authorized users are temporarily or permanently denied access to sensitive data. Ransomware commonly uses this method to extort organizations. Such disruptions can impede business operations and hinder essential services. They can also result in financial losses. Addressing and mitigating these breaches is essential to ensure uninterrupted access and business continuity.

Confidentiality Breach

A confidentiality breach occurs when unauthorized entities access sensitive data, infringing upon its privacy and confidentiality. The consequences can be severe. They can include financial fraud, identity theft, reputational harm, and legal repercussions. It's crucial to maintain strong security measures. Doing so prevents breaches and preserves sensitive information's integrity.

Integrity Breach

An integrity breach occurs when unauthorized individuals or entities alter or modify sensitive data. AI LLM training is particularly vulnerable to this breach form. This compromises the data's accuracy and reliability. This manipulation of data can result in misinformation, financial losses, and diminished trust in data quality. Vigilant measures are essential to protect data integrity. They also help reduce the impact of breaches.

How Sensitive Data Gets Exposed

Sensitive data, including vital information like Personally Identifiable Information (PII), financial records, and healthcare data, forms the backbone of contemporary organizations. Unfortunately, weak encryption, unreliable application programming interfaces, and insufficient security practices from development and security teams can jeopardize this invaluable data. Such lapses lead to critical vulnerabilities, exposing sensitive data at three crucial points:

Data in Transit

Data in transit refers to the transfer of data between locations, such as from a user's device to a server or between servers. This data is a prime target for attackers due to its often unencrypted state, making it vulnerable to interception. Key factors contributing to data exposure in transit include weak encryption, insecure protocols, and the risk of man-in-the-middle attacks. It is crucial to address these vulnerabilities to enhance the security of data during transit.

Data at Rest

While data at rest is less susceptible to interception than data in transit, it remains vulnerable to attacks. Enterprises commonly face internal exposure to sensitive data when they have misconfigurations or insufficient access controls on data at rest. Oversharing and insufficient access restrictions heighten the risk in data lakes and warehouses that house Personally Identifiable Information (PII). To mitigate this risk, it is important to implement robust access controls and monitoring measures. This ensures restricted access and vigilant tracking of data access patterns.

Data in Use

Data in use is the most vulnerable to attack, as it is often unencrypted and can be accessed by multiple users and applications. When working in cloud computing environments, dev teams usually gather the data and cache it within the mounts or in-memory to boost performance and reduce I/O. Such data causes sensitive data exposure vulnerabilities as other teams or cloud providers can access the data. The security teams need to adopt standard data handling practices. For example, they should clean the data from third-party or cloud mounts after use and disable caching.

What Causes Sensitive Data Exposure?

Sensitive data exposure results from a combination of internal and external factors. Internally, DevSecOps and Business Analytics teams play a significant role in unintentional data exposures. External threats usually come from hackers and malicious actors. Mitigating these risks requires a comprehensive approach to safeguarding data integrity and maintaining a resilient security posture.

Internal Causes of Sensitive Data Exposure

  • No or Weak Encryption: Encryption and decryption algorithms are the keys to safeguarding data. Sensitive data exposures occur due to weak cryptography protocols. They also occur due to a lack of encryption or hashing mechanisms.
  • Insecure Passwords: Insecure password practices and insufficient validation checks compromise enterprise security, facilitating data exposure.
  • Unsecured Web Pages: JSON payloads get delivered from web servers to frontend API handlers. Attackers can easily exploit the data transaction between the server and client when users browse unsecure web pages with weak SSL and TLS certificates.
  • Poor Access Controls and Misconfigurations: Insufficient multi-factor authentication (MFA) or excessive permissioning and unreliable security posture management contribute to sensitive data exposure through misconfigurations.
  • Insider Threat Attacks: Current or former employees may unintentionally or intentionally target data, posing risks to organizational security and integrity.

External Causes of Sensitive Data Exposure

  • SQL Injection: SQL Injection happens when attackers introduce malicious queries and SQL blocks into server requests. This lets them tamper with backend queries to retrieve or alter data, causing SQL injection attacks.
  • Network Compromise: A network compromise occurs when unauthorized users gain control of backend services or servers. This compromises network integrity, risking resource theft or data alteration.
  • Phishing Attacks: Phishing attacks contain malicious links. They exploit urgency, tricking recipients into disclosing sensitive information like login credentials or personal details.
  • Supply Chain Attacks: When compromised, Third-party service providers or vendors exploit the dependent systems and unintentionally expose sensitive data publicly.

Impact of Sensitive Data Exposure

Exposing sensitive data poses significant risks. It encompasses private details like health records, user credentials, and biometric data. Accountability, governed by acts like the Accountability Act, mandates organizations to safeguard granular user information. Failure to prevent unauthorized exposure can result in severe consequences. This can include identity theft and compromised user privacy. It can also lead to regulatory and legal repercussions and potential corruption of databases and infrastructure. Organizations must focus on stringent measures to mitigate these risks.

Data table on the impact of sensitive data exposure and its severity.

Examples of Sensitive Data Exposure

Prominent companies, including Atlassian, LinkedIn, and Dubsmash, have unfortunately become notable examples of sensitive data exposure incidents. Analyzing these cases provides insights into the causes and repercussions of such data exposure. It offers valuable lessons for enhancing data security measures.

Atlassian Jira (2019)

In 2019, Atlassian Jira, a project management tool, experienced significant data exposure. The exposure resulted from a configuration error. A misconfiguration in global permission settings allowed unauthorized access to sensitive information. This included names, email addresses, project details, and assignee data. The issue originated from incorrect permissions granted during the setup of filters and dashboards in JIRA.

LinkedIn (2021)

LinkedIn, a widely used professional social media platform, experienced a data breach where approximately 92% of user data was extracted through web scraping. The security incident was attributed to insufficient webpage protection and the absence of effective mechanisms to prevent web crawling activity.

Equifax (2017)

In 2017, Equifax Ltd., the UK affiliate of credit reporting company Equifax Inc., faced a significant data breach. Hackers infiltrated Equifax servers in the US, impacting over 147 million individuals, including 13.8 million UK users. Equifax failed to meet security obligations. It outsourced security management to its US parent company. This led to the exposure of sensitive data such as names, addresses, phone numbers, dates of birth, Equifax membership login credentials, and partial credit card information.

Cost of Compliance Fines

Data exposure poses significant risks, whether at rest or in transit. Attackers target various dimensions of sensitive information. This includes protected health data, biometrics for AI systems, and personally identifiable information (PII). Compliance costs are subject to multiple factors influenced by shifting regulatory landscapes. This is true regardless of the stage.

Enterprises failing to safeguard data face substantial monetary fines or imprisonment. The penalty depends on the impact of the exposure. Fines can range from millions to billions, and compliance costs involve valuable resources and time. Thus, safeguarding sensitive data is imperative for mitigating reputation loss and upholding industry standards.

How to Determine if You Are Vulnerable to Sensitive Data Exposure?

Detecting security vulnerabilities in the vast array of threats to sensitive data is a challenging task. Unauthorized access often occurs due to lax data classification and insufficient access controls. Enterprises must adopt additional measures to assess their vulnerability to data exposure.

Deep scans, validating access levels, and implementing robust monitoring are crucial steps. Detecting unusual access patterns is crucial. In addition, using advanced reporting systems to swiftly detect anomalies and take preventive measures in case of a breach is an effective strategy. It proactively safeguards sensitive data.

Automation is key as well - to allow burdened security teams the ability to keep pace with dynamic cloud use and data proliferation. Automating discovery and classification, freeing up resources, and doing so in a highly autonomous manner without requiring huge setup and configuration efforts can greatly help.

How to Prevent Sensitive Data Exposure

Effectively managing sensitive data demands rigorous preventive measures to avert exposure. Widely embraced as best practices, these measures serve as a strategic shield against breaches. The following points focus on specific areas of vulnerability. They offer practical solutions to either eliminate potential sensitive data exposures or promptly respond to them:

Assess Risks Associated with Data

The initial stages of data and access onboarding serve as gateways to potential exposure. Conducting a thorough assessment, continual change monitoring, and implementing stringent access controls for critical assets significantly reduces the risks of sensitive data exposure. This proactive approach marks the first step to achieving a strong data security posture.

Minimize Data Surface Area

Overprovisioning and excessive sharing create complexities. This turns issue isolation, monitoring, and maintenance into challenges. Without strong security controls, every part of the environment, platform, resources, and data transactions poses security risks. Opting for a less-is-more approach is ideal. This is particularly true when dealing with sensitive information like protected health data and user credentials. By minimizing your data attack surface, you mitigate the risk of cloud data leaks.

Store Passwords Using Salted Hashing Functions and Leverage MFA

Securing databases, portals, and services hinges on safeguarding passwords. This prevents unauthorized access to sensitive data. It is crucial to handle password protection and storage with precision. Use advanced hashing algorithms for encryption and decryption. Adding an extra layer of security through multi-factor authentication strengthens the defense against potential breaches even more.

Disable Autocomplete and Caching

Cached data poses significant vulnerabilities and risks of data breaches. Enterprises often use auto-complete features, requiring the storage of data on local devices for convenient access. Common instances include passwords stored in browser sessions and cache. In cloud environments, attackers exploit computing instances. They access sensitive cloud data by exploiting instances where data caching occurs. Mitigating these risks involves disabling caching and auto-complete features in applications. This effectively prevents potential security threats.

Fast and Effective Breach Response

Instances of personal data exposure stemming from threats like man-in-the-middle and SQL injection attacks necessitate swift and decisive action. External data exposure carries a heightened impact compared to internal incidents. Combatting data breaches demands a responsive approach. It's often facilitated by widely adopted strategies. These include Data Detection and Response (DDR), Security Orchestration, Automation, and Response (SOAR), User and Entity Behavior Analytics (UEBA), and the renowned Zero Trust Architecture featuring Predictive Analytics (ZTPA).

Tools to Prevent Sensitive Data Exposure

Shielding sensitive information demands a dual approach—internally and externally. Unauthorized access can be prevented through vigilant monitoring, diligent analysis, and swift notifications to both security teams and affected users. Effective tools, whether in-house or third-party, are indispensable in preventing data exposure.

Data Security Posture Management (DSPM) is designed to meet the changing requirements of security, ensuring a thorough and meticulous approach to protecting sensitive data. Tools compliant with DSPM standards usually feature data tokenization and masking, seamlessly integrated into their services. This ensures that data transmission and sharing remains secure.

These tools also often have advanced security features. Examples include detailed access controls, specific access patterns, behavioral analysis, and comprehensive logging and monitoring systems. These features are essential for identifying and providing immediate alerts about any unusual activities or anomalies.

Sentra emerges as an optimal solution, boasting sophisticated data discovery and classification capabilities. It continuously evaluates data security controls and issues automated notifications. This addresses critical data vulnerabilities ingrained in its core.

Conclusion

In the era of cloud transformation and digital adoption, data emerges as the driving force behind innovations. Personal Identifiable Information (PII), which is a specific type of sensitive data, is crucial for organizations to deliver personalized offerings that cater to user preferences. The value inherent in data, both monetarily and personally, places it at the forefront, and attackers continually seek opportunities to exploit enterprise missteps.

Failure to adopt secure access and standard security controls by data-holding enterprises can lead to sensitive data exposure. Unaddressed, this vulnerability becomes a breeding ground for data breaches and system compromises. Elevating enterprise security involves implementing data security posture management and deploying robust security controls. Advanced tools with built-in data discovery and classification capabilities are essential to this success. Stringent security protocols fortify the tools, safeguarding data against vulnerabilities and ensuring the resilience of business operations.

Discover Ron’s expertise, shaped by over 20 years of hands-on tech and leadership experience in cybersecurity, cloud, big data, and machine learning. As a serial entrepreneur and seed investor, Ron has contributed to the success of several startups, including Axonius, Firefly, Guardio, Talon Cyber Security, and Lightricks, after founding a company acquired by Oracle.

Subscribe

Latest Blog Posts

Gilad Golani
December 16, 2024
4
Min Read
Data Security

Best Practices: Automatically Tag and Label Sensitive Data

Best Practices: Automatically Tag and Label Sensitive Data

The Importance of Data Labeling and Tagging

In today's fast-paced business environment, data rarely stays in one place. It moves across devices, applications, and services as individuals collaborate with internal teams and external partners. This mobility is essential for productivity but poses a challenge: how can you ensure your data remains secure and compliant with business and regulatory requirements when it's constantly on the move?

Why Labeling and Tagging Data Matters

Data labeling and tagging provide a critical solution to this challenge. By assigning sensitivity labels to your data, you can define its importance and security level within your organization. These labels act as identifiers that abstract the content itself, enabling you to manage and track the data type without directly exposing sensitive information. With the right labeling, organizations can also control access in real-time.

For example, labeling a document containing social security numbers or credit card information as Highly Confidential allows your organization to acknowledge the data's sensitivity and enforce appropriate protections, all without needing to access or expose the actual contents.

Why Sentra’s AI-Based Classification Is a Game-Changer

Sentra’s AI-based classification technology enhances data security by ensuring that the sensitivity labels are applied with exceptional accuracy. Leveraging advanced LLM models, Sentra enhances data classification with context-aware capabilities, such as:

  • Detecting the geographic residency of data subjects.
  • Differentiating between Customer Data and Employee Data.
  • Identifying and treating Synthetic or Mock Data differently from real sensitive data.

This context-based approach eliminates the inefficiencies of manual processes and seamlessly scales to meet the demands of modern, complex data environments. By integrating AI into the classification process, Sentra empowers teams to confidently and consistently protect their data—ensuring sensitive information remains secure, no matter where it resides or how it is accessed.

Benefits of Labeling and Tagging in Sentra

Sentra enhances your ability to classify and secure data by automatically applying sensitivity labels to data assets. By automating this process, Sentra removes the manual effort required from each team member—achieving accuracy that’s only possible through a deep understanding of what data is sensitive and its broader context.

Here are some key benefits of labeling and tagging in Sentra:

  1. Enhanced Security and Loss Prevention: Sentra’s integration with Data Loss Prevention (DLP) solutions prevents the loss of sensitive and critical data by applying the right sensitivity labels. Sentra’s granular, contextual tags help to provide the detail necessary to action remediation automatically so that operations can scale.
  2. Easily Build Your Tagging Rules: Sentra’s Intuitive Rule Builder allows you to automatically apply sensitivity labels to assets based on your pre-existing tagging rules and or define new ones via the builder UI (see screen below). Sentra imports discovered Microsoft Purview Information Protection (MPIP) labels to speed this process.
  1. Labels Move with the Data: Sensitivity labels created in Sentra can be mapped to Microsoft Purview Information Protection (MPIP) labels and applied to various applications like SharePoint, OneDrive, Teams, Amazon S3, and Azure Blob Containers. Once applied, labels are stored as metadata and travel with the file or data wherever it goes, ensuring consistent protection across platforms and services.
  2. Automatic Labeling: Sentra allows for the automatic application of sensitivity labels based on the data's content. Auto-tagging rules, configured for each sensitivity label, determine which label should be applied during scans for sensitive information.
  3. Support for Structured and Unstructured Data: Sentra enables labeling for files stored in cloud environments such as Amazon S3 or EBS volumes and for database columns in structured data environments like Amazon RDS. By implementing these labeling practices, your organization can track, manage, and protect data with ease while maintaining compliance and safeguarding sensitive information. Whether collaborating across services or storing data in diverse cloud environments, Sentra ensures your labels and protection follow the data wherever it goes.

Applying Sensitivity Labels to Data Assets in Sentra

In today’s rapidly evolving data security landscape, ensuring that your data is properly classified and protected is crucial. One effective way to achieve this is by applying sensitivity labels to your data assets. Sensitivity labels help ensure that data is handled according to its level of sensitivity, reducing the risk of accidental exposure and enabling compliance with data protection regulations.

Below, we’ll walk you through the necessary steps to automatically apply sensitivity labels to your data assets in Sentra. By following these steps, you can enhance your data governance, improve data security, and maintain clear visibility over your organization's sensitive information.

The process involves three key actions:

  1. Create Sensitivity Labels: The first step in applying sensitivity labels is creating them within Sentra. These labels allow you to categorize data assets according to various rules and classifications. Once set up, these labels will automatically apply to data assets based on predefined criteria, such as the types of classifications detected within the data. Sensitivity labels help ensure that sensitive information is properly identified and protected.
  2. Connect Accounts with Data Assets: The next step is to connect your accounts with the relevant data assets. This integration allows Sentra to automatically discover and continuously scan all your data assets, ensuring that no data goes unnoticed. As new data is created or modified, Sentra will promptly detect and categorize it, keeping your data classification up to date and reducing manual efforts.
  3. Apply Classification Tags: Whenever a data asset is scanned, Sentra will automatically apply classification tags to it, such as data classes, data contexts, and sensitivity labels. These tags are visible in Sentra’s data catalog, giving you a comprehensive overview of your data’s classification status. By applying these tags consistently across all your data assets, you’ll have a clear, automated way to manage sensitive data, ensuring compliance and security.

By following these steps, you can streamline your data classification process, making it easier to protect your sensitive information, improve your data governance practices, and reduce the risk of data breaches.

Applying MPIP Labels

In order to apply Microsoft Purview Information Protection (MPIP) labels based on Sentra sensitivity labels, you are required to follow a few additional steps:

  1. Set up the Microsoft Purview integration - which will allow Sentra to import and sync MPIP sensitivity labels.
  2. Create tagging rules - which will allow you to map Sentra sensitivity labels to MPIP sensitivity labels (for example “Very Confidential” in Sentra would be mapped to “ACME - Highly Confidential” in MPIP), and choose to which services this rule would apply (for example, Microsoft 365 and Amazon S3).

Using Sensitivity Labels in Microsoft DLP

Microsoft Purview DLP (as well as all other industry-leading DLP solutions) supports MPIP labels in its policies so admins can easily control and prevent data loss of sensitive data across multiple services and applications.For instance, a MPIP ‘highly confidential’ label may instruct Microsoft Purview DLP to restrict transfer of sensitive data outside a certain geography. Likewise, another similar label could instruct that confidential intellectual property (IP) is not allowed to be shared within Teams collaborative workspaces.Labels can be used to help control access to sensitive data as well. Organizations can set a rule with read permission only for specific tags. For example, only production IAM roles can access production files. Further, for use cases where data is stored in a single store, organizations can estimate the storage cost for each specific tag.

Build a Stronger Foundation with Accurate Data Classification

Effectively tagging sensitive data unlocks significant benefits for organizations, driving improvements across accuracy, efficiency, scalability, and risk management. With precise classification exceeding 95% accuracy and minimal false positives, organizations can confidently label both structured and unstructured data. Automated tagging rules reduce the reliance on manual effort, saving valuable time and resources. Granular, contextual tags enable confident and automated remediation, ensuring operations can scale seamlessly. Additionally, robust data tagging strengthens DLP and compliance strategies by fully leveraging Microsoft Purview’s capabilities. By streamlining these processes, organizations can consistently label and secure data across their entire estate, freeing resources to focus on strategic priorities and innovation.

Read More
Aviv Zisso
November 21, 2024
4
Min Read
Data Security

Achieving Exabyte Scale Enterprise Data Security

Achieving Exabyte Scale Enterprise Data Security

The Growing Challenge for Enterprise Data Security

Enterprises are facing a unique set of challenges when it comes to managing and protecting their data. From my experience with customers, I’ve seen these challenges intensify as data governance frameworks struggle to keep up with evolving environments. Data is not confined to a single location - it’s scattered across different environments, from cloud platforms to on-premises servers and various SaaS applications. This distributed and siloed data stores model, while beneficial for flexibility and scalability, complicates data governance and introduces new security and privacy risks.

Many organizations now manage petabytes of constantly changing information, with new data being created, updated, or shared every second. As this volume expands into the hundreds or even thousands of petabytes (exabytes!), keeping track of it all becomes an overwhelming challenge.

The situation is further complicated by the rapid movement of data. Employees and applications copy, modify, or relocate sensitive information in seconds, often across diverse environments. This includes on-premises systems, multiple cloud platforms, and technologies like PaaS and IaaS. Such rapid data sprawl makes it increasingly difficult to maintain visibility and control over the data, and to keep the data protected with all the required controls, such as encryption and access controls.

The Complexities of Access Control

Alongside data sprawl, there’s also the challenge of managing access. Enterprise data ecosystems support thousands of identities (users, apps, machines) each with different levels of access and permissions. These identities may be spread across multiple departments and accounts, and their data needs are constantly evolving. Tracking and controlling which identity can access which data sets becomes a complex puzzle, one that can expose an organization to risks if not handled with precision.

For any enterprise, having an accurate, up-to-date view of who or what has access to what data (and why) is essential to maintaining security and ensuring compliance. Without this visibility and control, organizations run the risk of unauthorized access and potential data breaches.

The Need for Automated Data Risk Assessment 

In today’s data-driven world, security analysts often discover sensitive data in misconfigured environments—sometimes only after a breach—leading to a time-consuming process of validating data sensitivity, identifying business owners, and initiating remediation. In my work with enterprises, I’ve noticed this process is often further complicated by unclear ownership and inconsistent remediation practices.

With data constantly moving and accessed across diverse environments, organizations face critical questions: 

  • Where is our sensitive data?
  • Who has access? 
  • Are we compliant? 

Addressing these challenges requires a dynamic, always-on approach with trusted classification and automated remediation to monitor risks and enforce protection 24/7.

The Scale of the Problem

For enterprise organizations, scale amplifies every data management challenge. The larger the organization, the more complex it becomes to ensure data visibility, secure access, and maintain compliance. Traditional, human-dependent security approaches often struggle to keep up, leaving gaps that malicious actors exploit. Enterprises need robust, scalable solutions that can adapt to their expanding data needs and provide real-time insights into where sensitive data resides, how it’s used, and where the risks lie.

The Solution: Data Security Platform (DSP)

Sentra’s Cloud-native Data Security Platform (DSP) provides a solution designed to meet these challenges head-on. By continuously identifying sensitive data, its posture, and access points, DSP gives organizations complete control over their data landscape.

Sentra enables security teams to gain full visibility and control of their data while proactively protecting against sensitive data breaches across the public cloud. By locating all data, properly classifying its sensitivity, analyzing how it’s secured (its posture), and monitoring where it’s moving, Sentra helps reduce the “data attack surface” - the sum of all places where sensitive or critical data is stored.

Based on a cloud-native design, Sentra’s platform combines robust capabilities, including Data Discovery and Classification, Data Security Posture Management (DSPM), Data Access Governance (DAG), and Data Detection and Response (DDR). This comprehensive approach to data security ensures that Sentra’s customers can achieve enterprise-scale protection and gain crucial insights into their data. Sentra’s DSP offers a distinct layer of data protection that goes beyond traditional, infrastructure-dependent approaches, making it an essential addition to any organization’s security strategy.

By scaling data protection across multiple clouds and on-premises, Sentra enables organizations to meet the demands of enterprise growth and keep up with evolving business needs. And it does so efficiently, without creating unnecessary burdens on the security teams managing it.

determine the sensitivity of the data timeline

How a Robust DSP Can Handle Scale Efficiently

When selecting a DSP solution, it's essential to consider: How does this product ensure your sensitive data is kept secure no matter where it moves? And how can it scale effectively without driving up costs by constantly combing through every bit of data?

The key is in tailoring the DSP to your unique needs. Each organization, with its variety of environments and security requirements, needs a DSP that can adapt to specific demands. At Sentra, we’ve developed a flexible scanning engine that puts you in control, allowing you to customize what data is scanned, how it is tagged, and when. Our platform incorporates advanced optimization algorithms to keep scanning costs low without compromising on quality.

Priority Scanning

Do you really need to scan all the organization’s data? Do all data stores and assets hold the same priority? A smart DLP solution puts you in control, allowing you to adjust your scanning strategy based on the organization's specific priorities and sensitive data locations and uses. 

For example, some organizations may prioritize scanning employee-generated content, while others might focus on their production environment and perform more frequent scans there. Tailoring your scanning strategy ensures that the most important data is protected without overwhelming resources.

Smart Sampling

Is it necessary to scan every database record and every character in every file? The answer depends on your organization’s risk tolerance. For instance, in a PCI production environment, you might reduce the amount of sampling and scan every byte, while in a development environment you can group and sample data sets that share similar characteristics, allowing for more efficient scanning without compromising on security.

Edit Scan Configuration for data warehouse bucket

Delta scanning (tracking data changes) 

Delta scanning focuses on what matters most by selectively scanning data that poses a higher risk. Instead of re-scanning data that hasn’t changed, delta scanning prioritizes new or modified data, ensuring that resources are used efficiently. This approach helps to reduce scanning costs while keeping your data protection efforts focused on what has changed or been added.

A smart DLP will run efficiently and prioritize “new data” over “old data”, allowing you to optimize your scanning costs.  

On-Demand Data Scans

As you build your scanning strategy, it is important to keep the ability to trigger an immediate scan request. This is handy when you’re fixing security risks and want a short feedback loop to verify your changes. 

This also gives you the ability to prepare for compliance audits effectively by ensuring readiness and accurate and fresh classification.

Data warehouse bucket from Sentra's data security platform

Balancing Scan Speed and Cost

Smart sampling enables a balance between scan speed and cost. By focusing scans on relevant data and optimizing the scanning process, you can keep costs down while maintaining high accuracy and efficiency across your data landscape.

Achieve Scalable Data Protection with Cloud-Native DSPs

As enterprise organizations continue to navigate the complexities of managing vast amounts of data across multiple environments, the need for effective data security strategies becomes increasingly critical. The challenges of access control, risk analysis, and scaling security efforts can overwhelm traditional approaches, making it clear that a more automated, comprehensive solution is essential. A cloud-native Data Security Platform (DSP) offers the agility and efficiency required to meet these demands. 

By incorporating advanced features like smart sampling, delta scanning, and on-demand scan requests, Sentra’s DSP ensures that organizations can continuously monitor, protect, and optimize their data security posture without unnecessary resource strain. Balancing scan frequency, sensitivity and cost efficiency further enhances the ability to scale effectively, providing organizations with the tools they need to manage data risks, remain compliant, and protect sensitive information in an ever-evolving digital landscape.

If you want to learn more, talk to our data security experts and request a demo today.

Read More
David Stuart
October 21, 2024
5
Min Read
Data Sprawl

How Sentra Built a Data Security Platform for the AI Era

How Sentra Built a Data Security Platform for the AI Era

In just three years, Sentra has witnessed the rapid evolution of the data security landscape. What began with traditional on-premise Data Loss Prevention (DLP) solutions has shifted to a cloud-native focus with Data Security Posture Management (DSPM). This marked a major leap in how organizations protect their data, but the evolution didn’t stop there.

The next wave introduced new capabilities like Data Detection and Response (DDR) and Data Access Governance (DAG), pushing the boundaries of what DSPM could offer. Now, we’re entering an era where SaaS Security Posture Management (SSPM) and Artificial Intelligence Security Posture Management (AI-SPM) are becoming increasingly important. 

These shifts are redefining what we’ve traditionally called Data Security Platform (DSP) solutions, marking a significant transformation in the industry. The speed of this evolution speaks to the growing complexity of data security needs and the innovation required to meet them.

The Evolution of Data Security

What Is Driving The Evolution of Data Security?

The evolution of the data security market is being driven by several key macro trends:

  • Digital Transformation and Data Democratization: Organizations are increasingly embracing digital transformation, making data more accessible to various teams and users.
  • Rapid Cloud Adoption: Businesses are moving to the cloud at an unprecedented pace to enhance agility and responsiveness.
  • Explosion of Siloed Data Stores: The growing number of siloed data stores, diverse data technologies, and an expanding user base is complicating data management.
  • Increased Innovation Pace: The rise of artificial intelligence (AI) is accelerating the pace of innovation, creating new opportunities and challenges in data security.
  • Resource Shortages: As organizations grow, the need for automation to keep up with increasing demands has never been more critical.
  • Stricter Data Privacy Regulations: Heightened data privacy laws and stricter breach disclosure requirements are adding to the urgency for robust data protection measures.
Rapid cloud adoption

Similarly, there has been an evolution in the roles involved with the management, governance, and protection of data. These roles are increasingly intertwined and co-dependent as described in our recent blog entitled “Data: The Unifying Force Behind Disparate GRC Functions”. We identify that today each respective function operates within its own domain yet shares ownership of data at its core. As the co-dependency on data increases so does the need for a unifying platform approach to data security.

Sentra has adapted to these changes to align our messaging with industry expectations, buyer requirements, and product/technology advancements.

A Data Security Platform for the AI Era

Sentra is setting the standard with the leading Data Security Platform for the AI Era.

With its cloud-native design, Sentra seamlessly integrates powerful capabilities like Data Discovery and Classification, Data Security Posture Management (DSPM), Data Access Governance (DAG), and Data Detection and Response (DDR) into a comprehensive solution. This allows our customers to achieve enterprise-scale data protection while addressing critical questions about their data.

data security cycle - visibility, context, access, risks, threats

What sets Sentra apart is its connector-less, cloud-native architecture, which effortlessly scales to accommodate multi-petabyte, multi-cloud environments without the administrative burdens typical of connector-based legacy systems. These more labor-intensive approaches often struggle to keep pace and frequently overlook shadow data.

Moreover, Sentra harnesses the power of AI and machine learning to accurately interpret data context and classify data. This not only enhances data security but also ensures the privacy and integrity of data used in Gen- AI applications. We recognized the critical need for accurate and automated Data Discovery and Classification, along with Data Security Posture Management (DSPM), to address the risks associated with data proliferation in a multi-cloud landscape. Based on our customers' evolving needs, we expanded our capabilities to include DAG and DDR. These tools are essential for managing data access, detecting emerging threats, and improving risk mitigation and data loss prevention.

DAG maps the relationships between cloud identities, roles, permissions, data stores, and sensitive data classes. This provides a complete view of which identities and data stores in the cloud may be overprivileged. Meanwhile, DDR offers continuous threat monitoring for suspicious data access activity, providing early warnings of potential breaches.

We grew to support SaaS data repositories including Microsoft 365 (SharePoint, OneDrive, Teams, etc.), G Suite (Gdrive) and leveraged AI/ML to accurately classify data hidden within unstructured data stores.

Sentra’s accurate data sensitivity tagging and granular contextual details allows organizations to enhance the effectiveness of their existing tools, streamline workflows, and automate remediation processes. Additionally, Sentra offers pre-built integrations with various analysis and response tools used across the enterprise, including data catalogs, incident response (IR) platforms, IT service management (ITSM) systems, DLPs, CSPMs, CNAPPs, IAM, and compliance management solutions.

How Sentra Redefines Enterprise Data Security Across Clouds

Sentra has architected a solution that can deliver enterprise-scale data security without the traditional constraints and administrative headaches. Sentra’s cloud-native design easily scales to petabyte data volumes across multi-cloud and on-premises environments. 

The Sentra platform incorporates a few major differentiators that distinguish it from other solutions including:

  • Novel Scanning Technology: Sentra uses inventory files and advanced automatic grouping to create a new entity called “Data Asset”, a group of files that have the same structure, security posture and business function. Sentra automatically reduces billions of files into thousands of data assets (that represent different types of data) continuously, enabling full coverage of 100% of cloud data of petabytes to just several hundreds of thousands of files which need to be scanned (5-6 orders of magnitude less scanning required). Since there is no random sampling involved in the process, all types of data are fully scanned and for differentials on a daily basis. Sentra supports all leading IaaS, PaaS, SaaS and On-premises stores.
  • AI-powered Autonomous Classification: Sentra’s use of AI-powered classification provides approximately 97% classification accuracy of data within unstructured documents and structured data. Additionally, Sentra provides rich data context (distinct from data class or type) about multiple aspects of files, such as data subject residency, business impact, synthetic or real data, and more. Further, Sentra’s classification uses LLMs (inside the customer environment) to automatically learn and adapt based on the unique business context, false positive user inputs, and allows users to add AI-based classifiers using natural language (powered by LLMs). This autonomous learning means users don’t have to customize the system themselves, saving time and helping to keep pace with dynamic data.
  • Data Perimeters / Movement: Sentra DataTreks™ provides the ability to understand data perimeters automatically and detect when data is moving (e.g. copied partially or fully) to a different perimeter. For example, it can detect data similarity/movement from a well protected production environment to a less- protected development environment. This is important for highly dynamic cloud environments and promoting secure data democratization.
  • Data Detection and Response (DDR): Sentra’s DDR module highlights anomalies such as unauthorized data access or unusual data movements in near real-time, integrating alerts into existing tools like ServiceNow or JIRA for quick mitigation.
  • Easy Customization: In addition to ‘learning’ of a customer's unique data types, with Sentra it’s easy to create new classifiers, modify policies, and apply custom tagging labels.

As AI reshapes the digital landscape, it also creates new vulnerabilities, such as the risk of data exposure through AI training processes. The Sentra platform addresses these AI-specific challenges, while continuing to tackle the persistent security issues from the cloud era, providing an integrated solution that ensures data security remains resilient and adaptive.

Use Cases: Solving Complex Problems with Unique Solutions

Sentra’s unique capabilities allow it to serve a broad spectrum of challenging data security, governance and compliance use cases. Two frequently cited DSPM use cases are preventing data breaches and facilitating GenAI technology deployments. With the addition of data privacy compliance, these represent the top three.  

Let's dive deeper into how Sentra's platform addresses specific challenges:

Data Risk Visibility

Sentra’s Data Security Platform enables continuous analysis of your security posture and automates risk assessments across your entire data landscape. It identifies data vulnerabilities across cloud-native and unmanaged databases, data lakes, and metadata catalogs. By automating the discovery and classification of sensitive data, teams can prioritize actions based on the sensitivity and policy guidelines related to each asset. This automation not only saves time but also enhances accuracy, especially when leveraging large language models (LLMs) for detailed data classification.

Security and Compliance Audit

Sentra Data Security Platform can also automate the process of identifying regulatory violations and ensuring adherence to custom and pre-built policies (including policies that map to common compliance frameworks). 

The platform automates the identification of regulatory violations, ensuring compliance with both custom and established policies. It helps keep sensitive data in the right environments, preventing it from traveling to regions that violate retention policies or lack encryption. Unlike manual policy implementation, which is prone to errors, Sentra’s automated approach significantly reduces the risk of misconfiguration, ensuring that teams don’t miss critical activities.

Data Access Governance

Sentra enhances data access governance (DAG) by enforcing appropriate permissions for all users and applications within an organization. By automating the monitoring of access permissions, Sentra mitigates risks such as excessive permissions and unauthorized access. This ensures that teams can maintain least privilege access control, which is essential in a growing data ecosystem.

Minimizing Data and Attack Surface

The platform’s capabilities also extend to detecting unmanaged sensitive data, such as shadow or duplicate assets. By automatically finding and classifying these unknown data points, Sentra minimizes the attack surface, controls data sprawl, and enhances overall data protection.

Secure and Responsible AI

As organizations build new Generative AI applications, Sentra extends its protection to LLM applications, treating them as part of the data attack surface. This proactive management, alongside monitoring of prompts and outputs, addresses data privacy and integrity concerns, ensuring that organizations are prepared for the future of AI technologies.

Insider Risk Management

Sentra effectively detects insider risks by monitoring user access to sensitive information across various platforms. Its Data Detection and Response (DDR) capabilities provide real-time threat detection, analyzing user activity and audit logs to identify unusual patterns.

Data Loss Prevention (DLP)

The platform integrates seamlessly with endpoint DLP solutions to monitor all access activities related to sensitive data. By detecting unauthorized access attempts from external networks, Sentra can prevent data breaches before they escalate, all while maintaining a positive user experience.

Sentra’s robust Data Security Platform offers solutions for these use cases and more, empowering organizations to navigate the complexities of data security with confidence. With a comprehensive approach that combines visibility, governance, and protection, Sentra helps businesses secure their data effectively in today’s dynamic digital environment.

From DSPM to a Comprehensive Data Security Platform

Sentra has evolved beyond being the leading Data Security Posture Management (DSPM) solution; we are now a Cloud-native Data Security Platform (DSP). Today, we offer holistic solutions that empower organizations to locate, secure, and monitor their data against emerging threats. Our mission is to help businesses move faster and thrive in today’s digital landscape.

What sets the Sentra DSP apart is its unique layer of protection, distinct from traditional infrastructure-dependent solutions. It enables organizations to scale their data protection across ever-expanding multi-cloud environments, meeting enterprise demands while adapting to ever-changing business needs—all without placing undue burdens on the teams managing it.

And we continue to progress. In a world rapidly evolving with advancements in AI, the Sentra Data Security Platform stands as the most comprehensive and effective solution to keep pace with the challenges of the AI age. We are committed to developing our platform to ensure that your data security remains robust and adaptive.

 Sentra's Cloud-Native Data Security Platform provides comprehensive data protection for the entire data estate.
 Sentra Cloud-Native Data Security Platform provides comprehensive data protection for the entire data estate.
Read More
decorative ball