All Resources
In this article:
minus iconplus icon
Share the Blog

New AI-Assistant, Sentra Jagger, Is a Game Changer for DSPM and DDR

March 5, 2024
3
 Min Read
AI and ML

Evolution of Large Language Models (LLMs)

In the early 2000s, as Google, Yahoo, and others gained widespread popularity. Users found the search engine to be a convenient tool, effortlessly bringing a wealth of information to their fingertips. Fast forward to the 2020s, and we see Large Language Models (LLMs) are pushing productivity to the next level. LLMs skip the stage of learning, seamlessly bridging the gap between technology and the user.

LLMs create a natural interface between the user and the platform. By interpreting natural language queries, they effortlessly translate human requests into software actions and technical operations. This simplifies technology to make it close to invisible. Users no longer need to understand the technology itself, or how to get certain data — they can just input any query, and LLMs will simplify it.

Revolutionizing Cloud Data Security With Sentra Jagger

Sentra Jagger is an industry-first AI assistant for cloud data security based on the Large Language Model (LLM).

It enables users to quickly analyze and respond to security threats, cutting task times by up to 80% by answering data security questions, including policy customization and enforcement, customizing settings, creating new data classifiers, and reports for compliance. By reducing the time for investigating and addressing security threats, Sentra Jagger enhances operational efficiency and reinforces security measures.

Empowering security teams, users can access insights and recommendations on specific security actions using an interactive, user-friendly interface. Customizable dashboards, tailored to user roles and preferences, enhance visibility into an organization's data. Users can directly inquire about findings, eliminating the need to navigate through complicated portals or ancillary information.

Benefits of Sentra Jagger

  1. Accessible Security Insights: Simplified interpretation of complex security queries, offering clear and concise explanations in plain language to empower users across different levels of expertise. This helps users make informed decisions swiftly, and confidently take appropriate actions.
  1. Enhanced Incident Response: Clear steps to identify and fix issues, offering users clear steps to identify and fix issues, making the process faster and minimizing downtime, damage, and restoring normal operations promptly. 
  1. Unified Security Management: Integration with existing tools, creating a unified security management experience and providing a complete view of the organization's data security posture. Jagger also speeds solution customization and tuning.

Why Sentra Jagger Is Changing the Game for DSPM and DDR

Sentra Jagger is an essential tool for simplifying the complexities of both Data Security Posture Management (DSPM) and Data Detection and Response (DDR) functions. DSPM discovers and accurately classifies your sensitive data anywhere in the cloud environment, understands who can access this data, and continuously assesses its vulnerability to security threats and risk of regulatory non-compliance. DDR focuses on swiftly identifying and responding to security incidents and emerging threats, ensuring that the organization’s data remains secure. With their ability to interpret natural language, LLMs, such as Sentra Jagger, serve as transformative agents in bridging the comprehension gap between cybersecurity professionals and the intricate worlds of DSPM and DDR.

Data Security Posture Management (DSPM)

When it comes to data security posture management (DSPM), Sentra Jagger empowers users to articulate security-related queries in plain language, seeking insights into cybersecurity strategies, vulnerability assessments, and proactive threat management.

Meet Sentra Jagger, your new data security assistant

The language models not only comprehend the linguistic nuances but also translate these queries into actionable insights, making data security more accessible to a broader audience. This democratization of security knowledge is a pivotal step forward, enabling organizations to empower diverse teams (including privacy, governance, and compliance roles) to actively engage in bolstering their data security posture without requiring specialized cybersecurity training.

Data Detection and Response (DDR)

In the realm of data detection and response (DDR), Sentra Jagger contributes to breaking down technical barriers by allowing users to interact with the platform to seek information on DDR configurations, real-time threat detection, and response strategies. Our AI-powered assistant transforms DDR-related technical discussions into accessible conversations, empowering users to understand and implement effective threat protection measures without grappling with the intricacies of data detection and response technologies.

The integration of LLMs into the realms of DSPM and DDR marks a paradigm shift in how users will interact with and comprehend complex cybersecurity concepts. Their role as facilitators of knowledge dissemination removes traditional barriers, fostering widespread engagement with advanced security practices. 

Sentra Jagger is a game changer by making advanced technological knowledge more inclusive, allowing organizations and individuals to fortify their cybersecurity practices with unprecedented ease. It helps security teams better communicate with and integrate within the rest of the business. As AI-powered assistants continue to evolve, so will their impact to reshape the accessibility and comprehension of intricate technological domains.

How CISOs Can Leverage Sentra Jagger 

Consider a Chief Information Security Officer (CISO) in charge of cybersecurity at a healthcare company. To assess the security policies governing sensitive data in their environment, the CISO leverages Sentra’s Jagger AI assistant.. If the CISO, let's call her Sara, needs to navigate through the Sentra policy page, instead of manually navigating, Sara can simply queryJagger, asking, "What policies are defined in my environment?" In response, Jagger provides a comprehensive list of policies, including their names, descriptions, active issues, creation dates, and status (enabled or disabled).

Sara can then add a custom policy related to GDPR, by simply describing it. For example, "add a policy that tracks European customer information moving outside of Europe". Sentra Jagger will translate the request using Natural Language Processing (NLP) into a Sentra policy and inform Sara about potential non-compliant data movement based on the recently added policy.

Upon thorough review, Sara identifies a need for a new policy: "Create a policy that monitors instances where credit card information is discovered in a datastore without audit logs enabled." Sentra Jagger initiates the process of adding this policy by prompting Sara for additional details and confirmation. 

The LLM-assistant, Sentra Jagger, communicates, "Hi Sara, it seems like a valuable policy to add. Credit card information should never be stored in a datastore without audit logs enabled. To ensure the policy aligns with your requirements, I need more information. Can you specify the severity of alerts you want to raise and any compliance standards associated with this policy?" Sara responds, stating, "I want alerts to be raised as high severity, and I want the AWS CIS benchmark to be associated with it."

Having captured all the necessary information, Sentra Jagger compiles a summary of the proposed policy and sends it to Sara for her review and confirmation. After Sara confirms the details, the LLM-assistant, Sentra Jagger seamlessly incorporates the new policy into the system. This streamlined interaction with LLMs enhances the efficiency of policy management for CISOs, enabling them to easily navigate, customize, and implement security measures in their organizations.

Create a policy with Sentra Jagger
Creating a policy with Sentra Jagger

Conclusion 

The advent of Large Language Models (LLMs) has changed the way we interact with and understand technology. Building on the legacy of search engines, LLMs eliminate the learning curve, seamlessly translating natural language queries into software and technical actions. This innovation removes friction between users and technology, making intricate systems nearly invisible to the end user.

For Chief Information Security Officers (CISOs) and ITSecOps, LLMs offer a game-changing approach to cybersecurity. By interpreting natural language queries, Sentra Jagger bridges the comprehension gap between cybersecurity professionals and the intricate worlds of DSPM and DDR. This standardization of security knowledge allows organizations to empower a wider audience to actively engage in bolstering their data security posture and responding to security incidents, revolutionizing the cybersecurity landscape.

To learn more about Sentra, schedule a demo with one of our experts.

Discover Ron’s expertise, shaped by over 20 years of hands-on tech and leadership experience in cybersecurity, cloud, big data, and machine learning. As a serial entrepreneur and seed investor, Ron has contributed to the success of several startups, including Axonius, Firefly, Guardio, Talon Cyber Security, and Lightricks, after founding a company acquired by Oracle.

Subscribe

Latest Blog Posts

David Stuart
David Stuart
April 3, 2025
3
Min Read
Data Security

The Rise of Next-Generation DSPs

The Rise of Next-Generation DSPs

Recently there has been a significant shift from standalone Data Security Posture Management (DSPM) solutions to comprehensive Data Security Platforms (DSPs). These platforms integrate DSPM functionality, but also encompass access governance, threat detection, and data loss prevention capabilities to provide a more holistic data protection solution. Additionally, the critical role of data in AI and LLM training requires holistic data security platforms that can manage data sensitivity, ensure security and compliance, and maintain data integrity.

This consolidation will improve security effectiveness and help organizations manage the growing complexity of their IT environments. Originally more of a governance/compliance tool, DSPs have evolved into a critical necessity for organizations managing sensitive data in sprawling cloud environments. With the explosion of cloud adoption, stricter regulatory landscapes, and the increasing sophistication of cyber threats, DSPs will continue to evolve to address the monumental data scale expected.

DSP Addressing Modern Challenges in 2025

As the threat landscape evolves, DSP is shifting to address modern challenges. New trends such as AI integration, real-time threat detection, and cloud-native architectures are transforming how organizations approach data security. DSPM is no longer just about assuring compliance and proper data governance, it’s about mitigating all data risks, monitoring for new threats, and proactively resolving them in real time.

Must-Have DSP Features for 2025

Over the years, Data Security Platforms (DSPs) have evolved significantly, with a range of providers emerging to address the growing need for robust data security in cloud environments. Initially, smaller startups began offering innovative solutions, and in 2024, several of these providers were acquired, signaling the increasing demand for comprehensive data protection. As organizations continue to prioritize securing their cloud data, it's essential to carefully evaluate DSP solutions to ensure they meet key security needs. When assessing DSP options for 2025, certain features stand out as critical for ensuring a comprehensive and effective approach to data security.

Below are outlined the must-have features for any DSP solution in the coming year:

  1. Cloud-Native Architecture

Modern DSPs are built for the cloud and address vast data scale with cloud-native technologies that leverage provider APIs and functions. This allows data discovery and classification to occur autonomously, within the customer cloud environment leveraging existing compute resources. Agentless approaches reduce administrative burdens as well.

  1. AI-Based Classification

AI has revolutionized data classification, providing context-aware accuracy exceeding 95%. By understanding data in its unique context, AI-driven DSP solutions ensure the right security measures are applied without overburdening teams with false positives.

  1. Anomaly Detection and Real-Time Threat Detection

Anomaly detection, powered by Data Detection and Response (DDR), identifies unusual patterns in data usage to spotlight risks such as ransomware and insider threats. Combined with real-time, data-aware detection of suspicious activities, modern DSP solutions proactively address cloud-native vulnerabilities, stopping breaches before they unfold and ensuring swift, effective action.

  1. Automatic Labeling

Manual tagging is too cumbersome and time consuming. When choosing DSP solutions, it’s critical to make sure that you choose ones that automate data tagging and labeling, seamlessly integrating with Data Loss Prevention (DLP), Secure Access Service Edge (SASE), and governance platforms. This reduces errors and accelerates compliance processes.

  1. Data Zones and Perimeters

As data moves across cloud environments, maintaining control is paramount. Leading DSP solutions monitor data movement, alerting teams when data crosses predefined perimeters or storage zones, ensuring compliance with internal and external policies.

  1. Automatic Remediation and Enforcement

Automation extends to remediation, with DSPs swiftly addressing data risks like excessive permissions or misconfigurations. By enforcing protection policies across cloud environments, organizations can prevent breaches before they occur.

The Business Case for DSP in 2025

Proactive Security

Cloud-native DSP represents a shift from reactive to proactive security practices. By identifying and addressing risks early, and across their entire data estate from cloud to on-premises, organizations can mitigate potential threats and strengthen their security posture.

Regulatory Compliance

As regulations such as GDPR and CCPA continue to evolve, DSPM solutions play a crucial role in simplifying compliance by automating data discovery and labeling. This automation reduces the manual effort required to meet regulatory requirements. In fact, 84% of security and IT professionals consider data protection frameworks like GDPR and CCPA to be mandatory for their industries, emphasizing the growing need for automated solutions to ensure compliance.

The Rise of Gen AI

The rise of Gen AI is expected to be a main theme in 2025. Gen AI is a driver for data proliferation in the cloud and for a transition between legacy data technologies and modern ones that require an updated data security program.

Operational Efficiency

By automating repetitive tasks, DSPM significantly reduces the workload for security teams. This efficiency allows teams to focus on strategic initiatives rather than firefighting. According to a 2024 survey, organizations using DSPM reported a 40% reduction in time spent on manual data management tasks, demonstrating its impact on operational productivity.

Future-Proofing Your Organization with Cloud-Native DSP

To thrive in the evolving security landscape, organizations must adopt forward-looking strategies. Cloud-native DSP tools integrate seamlessly with broader security frameworks, ensuring resilience and adaptability. As technology advances, features like predictive analytics and deeper AI integration will further enhance capabilities.

Conclusion

Data security challenges are only becoming more complex, but new Data Security Platforms (DSPs) provide the tools to meet them head-on. Now is the time for organizations to take a hard look at their security posture and consider how DSPs can help them stay protected, compliant, and trusted. DSPs are quickly becoming essential to business operations, influencing strategic decisions and enabling faster, more secure innovation.

Ready to see it in action?

Request a demo to discover how a modern DSP can strengthen your security and support your goals.

Read More
Ran Shister
Ran Shister
March 27, 2025
3
Min Read
Sentra Case Study

Empowering Users to Self-Protect Their Data

Empowering Users to Self-Protect Their Data

In today’s fast-evolving cybersecurity landscape, organizations must not only deploy sophisticated security tools but also empower users to self-protect. Operationalizing this data security requires a proactive approach that integrates automation, streamlined processes, and user education. A recent discussion with Sapir Gottdiner, Cyber Security Architect at Global-e, highlighted key strategies to enhance data security by addressing alert management, sensitive data exposure, and user-driven security measures.

As a provider of end-to-end e-commerce solutions that combine localization capabilities, business intelligence, and logistics for streamlined international expansion, Global-e makes cross-border sales as simple as domestic ones. The chosen partner of leading brands and retailers across the USA, Europe and Asia, Global-e sets the standard of global e-commerce. This requires a strong commitment to security and compliance, and Global-e must comply with a number of strict regulations.

Automating Security Tasks for Efficiency

“One of the primary challenges faced by any security team is keeping pace with the volume of security alerts and the effort required to address them”, said Sapir. Automating human resource-constrained tasks is crucial for efficiency. For example, sensitive data should only exist in certain controlled environments, as improper data handling can lead to vulnerabilities. By leveraging DSPM which acts as a validation tool, organizations can automate the detection of sensitive information stored in incorrect locations and initiate remediation processes without human intervention.

Strengthening Sensitive Data Protection

A concern identified in the discussion was data accessible to unauthorized personnel in Microsoft OneDrive, that may contain sensitive information. To mitigate this, organizations should automate the creation of support tickets (in Jira, for instance) for security incidents, ensuring critical and high-risk alerts are addressed immediately. Assigning these incidents to the relevant departments and data owners ensures accountability and prompt resolution. Additionally, identifying the type and location of sensitive data enables organizations to implement precise fixes, reducing exposure risks.

Risk Management and Process Improvement

Permissioning is equally important and organizations must establish clear procedures and policies for managing authentication credentials. Different actions for different levels of risk to ensure no business interruption is applicable in most cases. This can vary from easy, quick access revocation for low-risk cases while requiring manual verification for critical credentials.

Furthermore, proper data storage is an important protection factor, given sovereignty regulations, data proliferation, etc. Implementing well-defined data mapping strategies and systematically applying proper hygiene and ensuring correct locations will minimize security gaps. For the future, Sapir envisions smart data mapping within O365 and deeper integrations with automated remediation workflow tools to further enhance security posture.

Continuous Review and Training

Sapir also suggests that to ensure compliance and effective security management, organizations should conduct monthly security reviews. These reviews help define when to close or suppress alerts, preventing unnecessary effort on minor issues. Additionally, policies should align with infrastructure security and regulatory compliance requirements such as GDPR, PCI and SOC2. Expanding security training programs is another essential step, equipping users with the knowledge on proper storage and handling of controlled data and how to avoid common security missteps. Empowering users to self-police/self-remediate allows lean security teams to scale data protection operations more efficiently.

Enhancing Communication and Future Improvements

Streamlined communication between security platforms, such as Jira and Microsoft Teams, can significantly improve incident resolution. Automating alert closures based on predefined criteria will reduce the workload on security teams. Addressing existing bugs, such as shadow IT detection issues, will further refine security processes. By fostering a culture of proactive security and leveraging automation, organizations can empower users to self-protect, ensuring a robust defense against evolving cyber threats.

Operationalizing data security is an ongoing effort that blends automation, user education, and process refinement. By taking a strategic user-enablement approach, organizations can create a security-aware culture while minimizing risks and optimizing their security response. Since implementing Sentra’s DSPM solution, Global-e has seen significant improvement in the strength of its data security posture. The company is now able to protect its cloud data more effectively, saving its security, IT, DevOps and engineering teams time, and ensuring it remains compliant with regulatory requirements. Empowering users and data owners to take responsibility for their data security, and providing the right tools to do so easily, is a game changer to the organization.

Read More
Meni Besso
Meni Besso
March 19, 2025
4
Min Read
Data Loss Prevention

Data Loss Prevention for Google Workspace

Data Loss Prevention for Google Workspace

We know that Google Workspace (formerly known as G Suite) and its assortment of services, including Gmail, Drive, Calendar, Meet, Docs, Sheets, Slides, Chat, and Vids, is a powerhouse for collaboration.

But the big question is: Do you know where your Google Workspace data is—and if it’s secure and who has access to it?

While Google Workspace has become an indispensable pillar in cloud operations and collaboration, its widespread adoption introduces significant security risks that businesses simply can't afford to ignore. To optimize Google Workspace data protection, enterprises must know how Google Workspace protects and classifies data. Knowing the scope, gaps, limitations, and silos of Google Workspace data protection mechanisms can help businesses strategize more effectively to mitigate data risks and ensure more holistic data security coverage across multi-cloud estates.

The Risks of Google Workspace Security

As with any dynamic cloud platform, Google Workspace is susceptible to data security risks, the most dangerous of which can do more than just undercut its benefits. Primarily, businesses should be concerned about the exposure of sensitive data nested within large volumes of unstructured data. For instance, if an employee shares a Google Drive folder or document containing sensitive data but with suboptimal access controls, it could snowball into a large-scale data security disaster. 

Without comprehensive visibility into sensitive data exposures across Google Workspace applications, businesses risk serious security threats. Besides sensitive data exposure, these include exploitable vulnerabilities, external attacks, human error, and shadow data. Complex shared responsibility models and unmet compliance policies also loom large, threatening the security of your data. 

To tackle these risks, businesses must prioritize and optimize data security across Google Workspace products while acknowledging that Google is rarely the sole platform an enterprise uses.

How Does Google Store Your Data?

To understand how to protect sensitive data in Google Workspace, it's essential to first examine how Google stores and manages this data. Why? Because the intricacies of data storage architectures and practices have significant implications for your security posture. 

Here are three-steps to help you understand and optimize your data storage in Google Workspace:

1. Know Where and How Google Stores Your Data

  • Google stores your files in customized servers in secure data centers.
  • Your data is automatically distributed across multiple regions, guaranteeing redundancy and availability.

2. Control Data Retention

  • Google retains your Workspace data until you or an admin deletes it.
  • Use Google Vault to manage retention policies and set custom retention rules for emails and files.
  • Regularly review and clean up unnecessary stored data to reduce security risks.

3. Secure Your Stored Data

  • Enable encryption for sensitive files in Google Drive.
  • Restrict who can view, edit, and share stored documents by implementing access controls.
  • Monitor data access logs to detect unauthorized access.

How Does Google Workspace Classify Your Data?

Google’s built-in classification tools are an acceptable starting point. However, they fall short of securing and classifying all unstructured data across complex cloud environments. This is because today's cloud attack surface expands across multiple providers, making security more complex than ever before. Consequently, Google's myopic classification often snowballs into bigger security problems, as data moves. Because of this evolving attack surface across multi-cloud environments, risk-ridden shadow data and unstructured data fester in Google Workspace apps. 

The Issue of Unstructured Data

It’s important to remember that most enterprise data is unstructured. Unstructured data refers to data that isn’t stored in standardized or easily manageable formats. In Google Workspace, this could be data in a Gmail draft, multimedia files in Google Drive, or other informal exchanges of sensitive information between Workspace apps. 

For years, unstructured data has been a nightmare for businesses to map, manage, and secure. Unstructured document stores and employee GDrives are hot zones for data risks. Native Google Drive data classification capabilities can be a useful source of metadata to support a more comprehensive external data classification solution. A cloud-native DSP solution can map, classify, and organize sensitive data, including PHI, PCI, and business secrets, across both Google Workspace and cloud platforms that Google's built-in capabilities do not cover, like AWS and S3.

How Does Google Workspace Protect Your Data?

Like its built-in classification mechanisms, Google's baseline security features, such as encryption and access controls, are good for simple use cases but aren't capable enough to fully protect complex environments. 

For both the classification and security of unstructured data, Google’s native tools may not suffice. A robust data loss prevention (DLP) solution should ideally do the trick for unstructured data. However, Google Workspace DLP alone and other protection measures (formerly referred to as G Suite data protection) are unlikely to provide holistic data security, especially in dynamic cloud environments.

Google Native Tool Challenges

Google’s basic protection measures don't tackle the full spectrum of critical Google Workspace data risks because they can't permeate unstructured documents, where sensitive data may reside in various protected states.

For example, an employee's personal Google Drive can potentially house exposed and exploitable sensitive data that can slip through Google's built-in security mechanisms. It’s also important to remember that Google Workspace data loss prevention capabilities do nothing to protect critical enterprise data hosted in other cloud platforms. 

Ultimately, while Google provides some security controls, they alone don’t offer the level of protection that today’s complex cloud environments demand. To close these gaps, businesses must look to complement Google’s built-in capabilities and invest in robust data security solutions.

Only a highly integrable data security tool with advanced AI and ML capabilities can protect unstructured data across Google Workspace’s diverse suite of apps, and further, across the entire enterprise data estate. This has become mandatory since multi-cloud architectures are the norm today.

A Robust Data Security Platform: The Key to Holistic Google Workspace Data Protection 

The speed, complexity, and rapid evolution of multi-cloud and hybrid cloud environments demand more advanced data security capabilities than Google Workspace’s native storage, classification, and protection features provide. 

It is becoming increasingly difficult to mitigate the risks associated with sensitive data.

To successfully remediate these risks, businesses urgently need robust data security posture management (DSPM) and data detection and response (DDR) solutions - preferably all in one platform. There's simply no other way to guarantee comprehensive data protection across Google Workspace. Furthermore, as mentioned earlier, most businesses don't exclusively use Google platforms. They often mix and match services from cloud providers like Google, Azure, and AWS.

In other words, besides limited data classification and protection, Google's built-in capabilities won't be able to extend into other branches of an enterprise's multi-cloud architecture. And having siloed data security tools for each of these cloud platforms increases costs and further complicates administration that can lead to critical coverage gaps. That's why the optimal solution is a holistic platform that can fill the gaps in Google's existing capabilities to provide unified data classification, security, and coverage across all other cloud platforms.

Sentra: The Ultimate Cloud-Agnostic Data Protection and Classification Solution 

To truly secure sensitive data across Google Workspace and beyond, enterprises need a cloud-native data security platform. That’s where Sentra comes in. It hands you enterprise-scale data protection by seamlessly integrating powerful capabilities like data discovery and classification, data security posture management (DSPM), data access governance (DAG), and data detection and response (DDR) into an all-in-one, easy-to-use platform.

By combining rule-based and large language model (LLM)-based classification, Sentra ensures accurate and scalable data security across Workspace apps like Google Drive—as well as data contained in apps from other cloud providers. This is crucial for any enterprise that hosts its data across disparate cloud platforms, not just Workspace. To classify unstructured data across these platforms, Sentra leverages supervised AI training models like BERT. It also uses zero-shot classification techniques to zero in on and accurately classify unstructured data. 

Sentra is particularly useful for anyone asking business-, industry-, or geography-specific data security questions such as “Does Google Workspace have HIPAA compliance frameworks?” and “Is my organization's use of Google Workspace GDPR-compliant?” The short answer to these questions: Integrate Sentra with your Google Workspace apps and you will see. 

Boost Your Google Workspace Data Protection with Sentra

By integrating Sentra with Google Workspace, companies can leverage AI-driven insights to distinguish employee data from customer data, ensuring a clearer understanding of their information landscape. Sentra also identifies customer-specific data types, such as personally identifiable information (PII), protected health information (PHI), product IDs, private codes, and localization requirements. Additionally, it detects toxic data combinations that may pose security risks.

Beyond insights, Sentra provides robust data protection through comprehensive inventorying and classification of unstructured data. It helps organizations right-size permissions, expose shadow data, and implement real-time detection of sensitive data exposure, security breaches, and suspicious activity, ensuring a proactive approach to data security.

No matter where your unstructured data resides, whether in Google Drive or any other cloud service, Sentra ensures it is accurately identified, classified, and protected with over 95% precision.

If you’re ready to take control of your data security, book a demo to discover how Sentra’s AI-driven protection secures your most valuable information across Google Workspace and beyond.

Read More
decorative ball