All Resources
In this article:
minus iconplus icon
Share the Blog

What Is Shadow Data? Examples, Risks and How to Detect It

December 27, 2023
3
Min Read
Data Security

What is Shadow Data?

Shadow data refers to any organizational data that exists outside the centralized and secured data management framework. This includes data that has been copied, backed up, or stored in a manner not subject to the organization's preferred security structure. This elusive data may not adhere to access control limitations or be visible to monitoring tools, posing a significant challenge for organizations. Shadow data is the ultimate ‘known unknown’. You know it exists, but you don’t know where it is exactly. And, more importantly, because you don’t know how sensitive the data is you can’t protect it in the event of a breach. 

You can’t protect what you don’t know.

Where Does Shadow Data Come From?

Whether it’s created inadvertently or on purpose, data that becomes shadow data is simply data in the wrong place, at the wrong time. Let's delve deeper into some common examples of where shadow data comes from:

  • Persistence of Customer Data in Development Environments:

The classic example of customer data that was copied and forgotten. When customer data gets copied into a dev environment from production, to be used as test data… But the problem starts when this duplicated data gets forgotten and never is erased or is backed up to a less secure location. So, this data was secure in its organic location, and never intended to be copied – or at least not copied and forgotten.

Unfortunately, this type of human error is common.

If this data does not get appropriately erased or backed up to a more secure location, it transforms into shadow data, susceptible to unauthorized access.

  • Decommissioned Legacy Applications:

Another common example of shadow data involves decommissioned legacy applications. Consider what becomes of historical customer data or Personally Identifiable Information (PII) when migrating to a new application. Frequently, this data is left dormant in its original storage location, lingering there until a decision is made to delete it - or not.  It may persist for a very long time, and in doing so, become increasingly invisible and a vulnerability to the organization.

  • Business Intelligence and Analysis:

Your data scientists and business analysts will make copies of production data to mine it for trends and new revenue opportunities.  They may test historic data, often housed in backups or data warehouses, to validate new business concepts and develop target opportunities.  This shadow data may not be removed or properly secured once analysis has completed and become vulnerable to misuse or leakage.

  • Migration of Data to SaaS Applications:

The migration of data to Software as a Service (SaaS) applications has become a prevalent phenomenon. In today's rapidly evolving technological landscape, employees frequently adopt SaaS solutions without formal approval from their IT departments, leading to a decentralized and unmonitored deployment of applications. This poses both opportunities and risks, as users seek streamlined workflows and enhanced productivity. On one hand, SaaS applications offer flexibility and accessibility, enabling users to access data from anywhere, anytime. On the other hand, the unregulated adoption of these applications can result in data security risks, compliance issues, and potential integration challenges.

  • Use of Local Storage by Shadow IT Applications:

Last but not least, a breeding ground for shadow data is shadow IT applications, which can be created, licensed or used without official approval (think of a script or tool developed in house to speed workflow or increase productivity). The data produced by these applications is often stored locally, evading the organization's sanctioned data management framework. This not only poses a security risk but also introduces an uncontrolled element in the data ecosystem.

Shadow Data vs Shadow IT

You're probably familiar with the term "shadow IT," referring to technology, hardware, software, or projects operating beyond the governance of your corporate IT. Initially, this posed a significant security threat to organizational data, but as awareness grew, strategies and solutions emerged to manage and control it effectively. Technological advancements, particularly the widespread adoption of cloud services, ushered in an era of data democratization. This brought numerous benefits to organizations and consumers by increasing access to valuable data, fostering opportunities, and enhancing overall effectiveness.

However, employing the cloud also means data spreads to different places, making it harder to track. We no longer have fully self-contained systems on-site. With more access comes more risk. Now, the threat of unsecured shadow data has appeared. Unlike the relatively contained risks of shadow IT, shadow data stands out as the most significant menace to your data security. 

The common questions that arise:

1. Do you know the whereabouts of your sensitive data?
2. What is this data’s security posture and what controls are applicable? 

3. Do you possess the necessary tools and resources to manage it effectively?

 

Shadow data, a prevalent yet frequently underestimated challenge, demands attention. Fortunately, there are tools and resources you can use in order to secure your data without increasing the burden on your limited staff.

Data Breach Risks Associated with Shadow Data

The risks linked to shadow data are diverse and severe, ranging from potential data exposure to compliance violations. Uncontrolled shadow data poses a threat to data security, leading to data breaches, unauthorized access, and compromise of intellectual property.

The Business Impact of Data Security Threats

Shadow data represents not only a security concern but also a significant compliance and business issue. Attackers often target shadow data as an easily accessible source of sensitive information. Compliance risks arise, especially concerning personal, financial, and healthcare data, which demands meticulous identification and remediation. Moreover, unnecessary cloud storage incurs costs, emphasizing the financial impact of shadow data on the bottom line. Businesses can return investment and reduce their cloud cost by better controlling shadow data.

As more enterprises are moving to the cloud, the concern of shadow data is increasing. Since shadow data refers to data that administrators are not aware of, the risk to the business depends on the sensitivity of the data. Customer and employee data that is improperly secured can lead to compliance violations, particularly when health or financial data is at risk. There is also the risk that company secrets can be exposed. 

An example of this is when Sentra identified a large enterprise’s source code in an open S3 bucket. Part of working with this enterprise, Sentra was given 7 Petabytes in AWS environments to scan for sensitive data. Specifically, we were looking for IP - source code, documentation, and other proprietary data. As usual, we discovered many issues, however there were 7 that needed to be remediated immediately. These 7 were defined as ‘critical’.

The most severe data vulnerability was source code in an open S3 bucket with 7.5 TB worth of data. The file was hiding in a 600 MB .zip file in another .zip file. We also found recordings of client meetings and a 8.9 KB excel file with all of their existing current and potential customer data. Unfortunately, a scenario like this could have taken months, or even years to notice - if noticed at all. Luckily, we were able to discover this in time.

How You Can Detect and Minimize the Risk Associated with Shadow Data

Strategy 1: Conduct Regular Audits

Regular audits of IT infrastructure and data flows are essential for identifying and categorizing shadow data. Understanding where sensitive data resides is the foundational step toward effective mitigation. Automating the discovery process will offload this burden and allow the organization to remain agile as cloud data grows.

Strategy 2: Educate Employees on Security Best Practices

Creating a culture of security awareness among employees is pivotal. Training programs and regular communication about data handling practices can significantly reduce the likelihood of shadow data incidents.

Strategy 3: Embrace Cloud Data Security Solutions

Investing in cloud data security solutions is essential, given the prevalence of multi-cloud environments, cloud-driven CI/CD, and the adoption of microservices. These solutions offer visibility into cloud applications, monitor data transactions, and enforce security policies to mitigate the risks associated with shadow data.

How You Can Protect Your Sensitive Data with Sentra’s DSPM Solution

The trick with shadow data, as with any security risk, is not just in identifying it – but rather prioritizing the remediation of the largest risks. Sentra’s Data Security Posture Management follows sensitive data through the cloud, helping organizations identify and automatically remediate data vulnerabilities by:

  • Finding shadow data where it’s not supposed to be:

Sentra is able to find all of your cloud data - not just the data stores you know about.

  • Finding sensitive information with differing security postures:

Finding sensitive data that doesn’t seem to have an adequate security posture.

  • Finding duplicate data:

Sentra discovers when multiple copies of data exist, tracks and monitors them across environments, and understands which parts are both sensitive and unprotected.

  • Taking access into account:

Sometimes, legitimate data can be in the right place, but accessible to the wrong people. Sentra scrutinizes privileges across multiple copies of data, identifying and helping to enforce who can access the data.

Key Takeaways

Comprehending and addressing shadow data risks is integral to a robust data security strategy. By recognizing the risks, implementing proactive detection measures, and leveraging advanced security solutions like Sentra's DSPM, organizations can fortify their defenses against the evolving threat landscape. 

Stay informed, and take the necessary steps to protect your valuable data assets.

To learn more about how Sentra can help you eliminate the risks of shadow data, schedule a demo with us today.

<blogcta-big>

Discover Ron’s expertise, shaped by over 20 years of hands-on tech and leadership experience in cybersecurity, cloud, big data, and machine learning. As a serial entrepreneur and seed investor, Ron has contributed to the success of several startups, including Axonius, Firefly, Guardio, Talon Cyber Security, and Lightricks, after founding a company acquired by Oracle.

Subscribe

Latest Blog Posts

Yair Cohen
Yair Cohen
Nikki Ralston
Nikki Ralston
January 19, 2026
3
Min Read

One Platform to Secure All Data: Moving from Data Discovery to Full Data Access Governance

One Platform to Secure All Data: Moving from Data Discovery to Full Data Access Governance

The cloud has changed how organizations approach data security and compliance. Security leaders have mostly figured out where their sensitive data is, thanks to data security posture management (DSPM) tools. But that's just the beginning. Who can access your data? What are they doing with it?

Workloads and sensitive assets now move across multi-cloud, hybrid, and SaaS environments, increasing the need for control over access and use. Regulators, boards, and customers expect more than just awareness. They want real proof that you are governing access, lowering risk, and keeping cloud data secure. The next priority is here: shifting from just knowing what data you have to actually governing access to it. Sentra provides a unified platform designed for this shift.

Why Discovery Alone Falls Short in the Cloud Era

DSPM solutions make it possible to locate, classify, and monitor sensitive data almost anywhere, from databases to SaaS apps. This visibility is valuable, particularly as organizations manage more data than ever. Over half of enterprises have trouble mapping their full data environment, and 85% experienced a data loss event in the past year.

But simply seeing your data won’t do the job. DSPM can point out risks, like unencrypted data or exposed repositories, but it usually can’t control access or enforce policies in real time. Cloud environments change too quickly for static snapshots and scheduled reviews. Effective security means not only seeing your data but actively controlling who can reach it and what they can do.

Data Access Governance: The New Frontier for Cloud Data Security

Data Access Governance (DAG) covers processes and tools that constantly monitor, control, and audit who can access your data, how, and when, wherever it lives in the cloud.

Why does DAG matter so much now? Consider some urgent needs:

  • Compliance and Auditability: 82% of organizations rank compliance as their top cloud concern. Data access controls and real-time audit logs make it possible to demonstrate compliance with GDPR, HIPAA, and other data laws.
  • Risk Reduction: Cloud environments change constantly, so outdated access policies quickly become a problem. DAG enforces least-privilege access, supports just-in-time permissions, and lets teams quickly respond to risky activity.
  • AI and New Threats: As generative AI becomes more common, concerns about misuse and unsupervised data access are growing. Forty percent of organizations now see AI as a data leak risk.

DAG gives organizations a current view of “who has access to my data right now?” for both employees and AI agents, and allows immediate changes if permissions or risks shift.

The Power of a Unified, Agentless Platform for DSPM and DAG

Why should security teams look for a unified platform instead of another narrow tool? Most large companies use several clouds, with 83% managing more than one, but only 34% have unified compliance. Legacy tools focused on discovery or single clouds aren’t enough.

Sentra’s agentless, multi-cloud solution meets these needs directly. With nothing extra to install or maintain, Sentra provides:

  • Automated discovery and classification of data in AWS, Azure, GCP, and SaaS
  • Real-time mapping and management of every access, from users to services and APIs
  • Policy-as-code for dynamic enforcement of least-privilege access
  • Built-in detection and response that moves beyond basic rules

This approach combines data discovery with ongoing access management, helping organizations save time and money. It bridges the gaps between security, compliance, and DevOps teams. GlobalNewswire projects the global market for unified data governance will exceed $15B by 2032. Companies are looking for platforms that can keep things simple and scale with growth.

Strategic Benefits: From Reduced Risk to Business Enablement

What do organizations actually achieve with cloud-native, end-to-end data access governance?

  • Operational Efficiency: Replace slow, manual reviews and separate tools. Automate access reviews, policy enforcement, and compliance, all in one platform.
  • Faster Remediation and Lower TCO: Real-time alerts pinpoint threats faster, and automation speeds up response and reduces resource needs.
  • Future-Proof Security: Designed to handle multi-cloud and AI demands, with just-in-time access, zero standing privilege, and fast threat response.
  • Business Enablement and Audit Readiness: Central visibility and governance help teams prepare for audits faster, gain customer trust, and safely launch digital products.

In short, a unified platform for DSPM and DAG is more than a tech upgrade, it gives security teams the ability to directly support business growth and agility.

Why Sentra: The Converged Platform for Modern Data Security

Sentra covers every angle: agentless discovery, continuous access control, ongoing threat detection, and compliance, all within one platform. Sentra unites DSPM, DAG, and Data Detection & Response (DDR) in a single solution.

With Sentra, you can:

  • Stop relying on periodic reviews and move to real-time governance
  • See and manage data across all cloud and SaaS services
  • Make compliance easier while improving security and saving money

Conclusion

Data discovery is just the first step to securing cloud data. For compliance, resilience, and agility, organizations need to go beyond simply finding data and actually managing who can use it. DSPM isn’t enough anymore, full Data Access Governance is now a must.

Sentra’s agentless platform gives security and compliance teams a way to find, control, and protect sensitive cloud data, with full oversight along the way. Make the switch now and turn cloud data security into an asset for your business.

Looking to bring all your cloud data security and access control together? Request a Sentra demo to see how it works, or watch a 5-minute product demo for more on how Sentra helps organizations move from discovery to full data governance.

<blogcta-big>

Read More
Gilad Golani
Gilad Golani
January 18, 2026
3
Min Read

False Positives Are Killing Your DSPM Program: How to Measure Classification Accuracy

False Positives Are Killing Your DSPM Program: How to Measure Classification Accuracy

As more organizations move sensitive data to the cloud, Data Security Posture Management (DSPM) has become a critical security investment. But as DSPM adoption grows, a big problem is emerging: security teams are overwhelmed by false positives that create too much noise and not enough useful insight. If your security program is flooded with unnecessary alerts, you end up with more risk, not less.

Most enterprises say their existing data discovery and classification solutions fall short, primarily because they misclassify data. False positives waste valuable analyst time and deteriorate trust in your security operation. Security leaders need to understand what high-quality data classification accuracy really is, why relying only on regex fails, and how to use objective metrics like precision and recall to assess potential tools. Here’s a look at what matters most for accuracy in DSPM.

What Does Good Data Classification Accuracy Look Like?

To make real progress with data classification accuracy, you first need to know how to measure it. Two key metrics - precision and recall - are at the core of reliable classification. Precision tells you the share of correct positive results among everything identified as positive, while recall shows the percentage of actual sensitive items that get caught. You want both metrics to be high. Your DSPM solution should identify sensitive data, such as PII or PCI, without generating excessive false or misclassified results.

The F1-score adds another perspective, blending precision and recall for a single number that reflects both discovery and accuracy. On the ground, these metrics mean fewer false alerts, quicker responses, and teams that spend their time fixing problems rather than chasing noise. "Good" data classification produces consistent, actionable results, even as your cloud data grows and changes.

The Hidden Cost of Regex-Only Data Discovery

A lot of older DSPM tools still depend on regular expressions (regex) to classify data in both structured and unstructured systems. Regex works for certain fixed patterns, but it struggles with the diverse, changing data types common in today’s cloud and SaaS environments. Regex can't always recognize if a string that “looks” like a personal identifier is actually just a random bit of data. This results in security teams buried by alerts they don’t need, leading to alert fatigue.

Far from helping, regex-heavy approaches waste resources and make it easier for serious risks to slip through. As privacy regulations become more demanding and the average breach hit $4.4 million according to the annual "Cost of a Data Breach Report" by IBM and the Ponemon Institute, ignoring precision and recall is becoming increasingly costly.

How to Objectively Test DSPM Accuracy in Your POC

If your current DSPM produces more noise than value, a better method starts with clear testing. A meaningful proof-of-value (POV) process uses labeled data and a confusion matrix to calculate true positives, false positives, and false negatives. Don’t rely on vendor promises. Always test their claims with data from your real environment. Ask hard questions: How does the platform classify unstructured data? How much alert noise can you expect? Can it keep accuracy high even when scanning huge volumes across SaaS, multi-cloud, and on-prem systems? The best DSPM tool cuts through the clutter, surfacing only what matters.

Sentra Delivers Highest Accuracy with Small Language Models and Context

Sentra’s DSPM platform raises the bar by going beyond regex, using purpose-built small language models (SLMs) and advanced natural language processing (NLP) for context-driven data classification at scale. Customers and analysts consistently report that Sentra achieves over the highest classification accuracy for PII and PCI, with very few false positives.

Gartner Review - Sentra received 5 stars

How does Sentra get these results without data ever leaving your environment? The platform combines multi-cloud discovery, agentless install, and deep contextual awareness - scanning extensive environments and accurately discerning real risks from background noise. Whether working with unstructured cloud data, ever-changing SaaS content, or traditional databases, Sentra keeps analysts focused on real issues and helps you stay compliant. Instead of fighting unnecessary alerts, your team sees clear results and can move faster with confidence.

Want to see Sentra DSPM in action? Schedule a Demo.

Reducing False Positives Produces Real Outcomes

Classification accuracy has a direct impact on whether your security is efficient or overwhelmed. With compliance rules tightening and threats growing, security teams cannot afford DSPM solutions that bury them in false positives. Regex-only tools no longer cut it - precision, recall, and truly reliable results should be standard.

Sentra’s SLM-powered, context-aware classification delivers the trustworthy performance businesses need, changing DSPM from just another alert engine to a real tool for reducing risk. Want to see the difference yourself? Put Sentra’s accuracy to the test in your own environment and finally move past false positive fatigue.

<blogcta-big>

Read More
Ward Balcerzak
Ward Balcerzak
January 14, 2026
4
Min Read

The Real Business Value of DSPM: Why True ROI Goes Beyond Cost Savings

The Real Business Value of DSPM: Why True ROI Goes Beyond Cost Savings

As enterprises scale cloud usage and adopt AI, the value of Data Security Posture Management (DSPM) is no longer just about checking a tool category box. It’s about protecting what matters most: sensitive data that fuels modern business and AI workflows.

Traditional content on DSPM often focuses on cost components and deployment considerations. That’s useful, but incomplete. To truly justify DSPM to executives and boards, security leaders need a holistic, outcome-focused view that ties data risk reduction to measurable business impact.

In this blog, we unpack the real, measurable benefits of DSPM, beyond just cost savings, and explain how modern DSPM strategies deliver rapid value far beyond what most legacy tools promise. 

1. Visibility Isn’t Enough - You Need Context

A common theme in DSPM discussions is that tools help you see where sensitive data lives. That’s important, but it’s only the first step. Real value comes from understanding context. Who can access the data, how it’s being used, and where risk exists in the wider security posture. Organizations that stop at discovery often struggle to prioritize risk and justify spend.

Modern DSPM solutions go further by:

  • Correlating data locations with access rights and usage patterns
  • Mapping sensitive data flows across cloud, SaaS, and hybrid environments
  • Detecting shadow data stores and unmanaged copies that silently increase exposure
  • Linking findings to business risk and compliance frameworks

This contextual intelligence drives better decisions and higher ROI because teams aren’t just counting sensitive data, they’re continuously governing it.

2. DSPM Saves Time and Shrinks Attack Surface Fast

One way DSPM delivers measurable business value is by streamlining functions that used to be manual, siloed, and slow:

  • Automated classification reduces manual tagging and human error
  • Continuous discovery eliminates periodic, snapshot-alone inventories
  • Policy enforcement reduces time spent reacting to audit requests

This translates into:

  • Faster compliance reporting
  • Shorter audit cycles
  • Rapid identification and remediation of critical risks

For security leaders, the speed of insight becomes a competitive advantage, especially in environments where data volumes grow daily and AI models can touch every corner of the enterprise.

3. Cost Benefits That Matter, but with Context

Lately I’m hearing many DSPM discussions break down cost components like scanning compute, licensing, operational expenses, and potential cloud savings. That’s a good start because DSPM can reduce cloud waste by identifying stale or redundant data, but it’s not the whole story.

 

Here’s where truly strategic DSPM differs:

Operational Efficiency

When DSPM tools automate discovery, classification, and risk scoring:

  • Teams spend less time on manual reports
  • Alert fatigue drops as noise is filtered
  • Engineers can focus on higher-value work

Breach Avoidance

Data breaches are expensive. According to industry studies, the average cost of a data breach runs into millions, far outweighing the cost of DSPM itself. A DSPM solution that prevents even one breach or major compliance failure pays for itself tenfold

Compliance as a Value Center

Rather than treating compliance as a cost center consider that:

  • DSPM reduces audit overhead
  • Provides automated evidence for frameworks like GDPR, HIPAA, PCI DSS
  • Improves confidence in reporting accuracy

That’s a measurable business benefit CFOs can appreciate and boards expect.

4. DSPM Reduces Risk Vector Multipliers Like AI

One benefit that’s often under-emphasized is how DSPM reduces risk vector multipliers, the factors that amplify risk exponentially beyond simple exposure counts.

In 2026 and beyond, AI systems are increasingly part of the risk profile. Modern DSPM help reduce the heightened risk from AI by:

  • Identifying where sensitive data intersects with AI training or inference pipelines
  • Governing how AI tools and assistants can access sensitive content
  • Providing risk context so teams can prevent data leakage into LLMs

This kind of data-centric, contextual, and continuous governance should be considered a requirement for secure AI adoption, no compromise.

5. Telling the DSPM ROI Story

The most convincing DSPM ROI stories aren’t spreadsheets, they’re narratives that align with business outcomes. The key to building a credible ROI case is connecting metrics, security impact, and business outcomes:

Metric Security Impact Business Outcome
Faster discovery & classification Fewer blind spots Reduced breach likelihood
Consistent governance enforcement Fewer compliance issues Lower audit cost
Contextual risk scoring Better prioritization Efficient resource allocation
AI governance Controlled AI exposure Safe innovation

By telling the story this way, security leaders can speak in terms the board and executives care about: risk reduction, compliance assurance, operational alignment, and controlled growth.

How to Evaluate DSPM for Real ROI

To capture tangible return, don’t evaluate DSPM solely on cost or feature checklists. Instead, test for:

1. Scalability Under Real Load

Can the tool discover and classify petabytes of data, including unstructured content, without degrading performance?

2. Accuracy That Holds Up

Poor classification undermines automation. True ROI requires consistent, top-performing accuracy rates.

3. Operational Cost Predictability

Beware of DSPM solutions that drive unexpected cloud expenses due to inefficient scanning or redundant data reads.

4. Integration With Enforcement Workflows

Visibility without action isn’t ROI. Your DSPM should feed DLP, IAM/CIEM, SIEM/SOAR, and compliance pipelines (ticketing, policy automation, alerts).

ROI Is a Journey, Not a Number

Costs matter, but value lives in context. DSPM is not just a cost center, it’s a force multiplier for secure cloud operations, AI readiness, compliance, and risk reduction. Instead of seeing DSPM as another tool, forward-looking teams view it as a fundamental decision support engine that changes how risk is measured, prioritized, and controlled.

Ready to See Real DSPM Value in Your Environment?

Download Sentra’s “DSPM Dirty Little Secrets” guide, a practical roadmap for evaluating DSPM with clarity, confidence, and production reality in mind.

👉 Download the DSPM Dirty Little Secrets guide now

Want a personalized walkthrough of how Sentra delivers measurable DSPM value?
👉 Request a demo

<blogcta-big>

Read More
Expert Data Security Insights Straight to Your Inbox
What Should I Do Now:
1

Get the latest GigaOm DSPM Radar report - see why Sentra was named a Leader and Fast Mover in data security. Download now and stay ahead on securing sensitive data.

2

Sign up for a demo and learn how Sentra’s data security platform can uncover hidden risks, simplify compliance, and safeguard your sensitive data.

3

Follow us on LinkedIn, X (Twitter), and YouTube for actionable expert insights on how to strengthen your data security, build a successful DSPM program, and more!

Before you go...

Get the Gartner Customers' Choice for DSPM Report

Read why 98% of users recommend Sentra.

White Gartner Peer Insights Customers' Choice 2025 badge with laurel leaves inside a speech bubble.