All Resources
In this article:
minus iconplus icon
Share the Blog

Why Legacy Data Classification Tools Don't Work Well in the Cloud (But DSPM Does)

September 7, 2023
5
Min Read
Data Security

Data security teams are always trying to understand where their sensitive data is. Yet this goal has remained out of reach for a number of reasons.

The main difficulty is creating a continuously updated data catalog of all production and cloud data. Creating this catalog would involve:

  1.  Identifying everyone in the organization with knowledge of any data stores, with visibility into its contents
  1. Connecting a data classification tool to these data stores
  1. Ensure there’s network connectivity by configuring network and security policies
  1. Confirm that business-critical production systems using each data source won’t be negatively affected, causing damage to performance or availability

Having a process this complex requires a major investment of resources, long workflows, and will still probably not provide the full coverage organizations are looking for. Many so-called successful implementations of such solutions will prove unreliable and too difficult to maintain after a short period of time.

Another pain with a legacy data classification solution is accuracy. Data security professionals are all too aware of the problem of false positives (i.e. wrong classification and data findings) and false negatives (i.e. missing classification of sensitive data that remains unknown). This is mainly due to two reasons.

 

  • Legacy classification solutions rely solely on patterns, such as regular expressions, to identify sensitive data, which falls short in both unstructured data and structured data. 
  • These solutions don’t understand the business context around the data, such as how it is being used, by whom, for what purposes and more.

Without the business context, security teams can’t get any actionable items to remove or protect sensitive data against data risks and security breaches.

Lastly, there’s the reason behind high operational costs. Legacy data classification solutions were not built for the cloud, where each data read/write and network operation has a price tag.

The cloud also offers a much more cost efficient data storage solution and advanced data services that causes organizations to store much more data than they did before moving to the cloud. On the other hand, the public cloud providers also offer a variety of cloud-native APIs and mechanisms that can extremely benefit a data classification and security solution, such as automated backups, cross account federation, direct access to block storage, storage classes, compute instance types, and much more. However, legacy data classification tools, that were not built for the cloud, will completely ignore those benefits and differences, making them an extremely expensive solution for cloud-native organizations.

DSPM: Built to Solve Data Classification in the Cloud 

These challenges have led to the growth of a new approach to securing cloud data - Data Security Posture Management, or DSPM. Sentra’s DSPM  is able to provide full coverage and an up-to-date data catalog with classification of sensitive data, without any complex deployment or operational work involved. This is achieved thanks to a cloud-native agentless architecture, using cloud-native APIs and mechanisms.

A good example of this approach is how Sentra’s DSPM architecture leverages the public cloud mechanism of automated backups for compute instances, block storage, and more. This allows Sentra to securely run its robust discovery and classification technology from within the customer’s premises, in any VPC or subscription/account of the customer’s choice.

This offers a number of benefits:

  1. The organization does not need to change any existing infrastructure configuration, network policies, or security groups.
  1. There’s no need to provide individual credentials for each data source in order for Sentra to discover and scan it.
  1. There is never a performance impact on the actual workloads that are compute-based/bounded, such as virtual machines, that run in production environments. In fact, Sentra’s scanning will never connect via network or application layers to those data stores.

Another benefit of a DSPM built for the cloud is classification accuracy.  Sentra’s DSPM provides an unprecedented level of accuracy thanks to more modern and cloud-native capabilities.This starts with advanced statistical relevance for structured data, enabling our classification engine to understand with high confidence that sensitive data is found within a specific column or field, without scanning every row in a large table.

Sentra leverages even more advanced algorithms for key-value stores and document databases. For unstructured data, the use of AI and LLM -based algorithms unlock tremendous accuracy in understanding and detecting sensitive data types by understanding the context within the data itself. Lastly, the combination of data-centric and identity-centric security approaches provides greater context that allows Sentra’s users to know what actions they should take to remediate data risks when it comes to classification.

Here are two examples of how we apply this context:

1. Different Types of Databases

Personal Identifiable Information (PII) that is found in a database in which only users from the Analytics team have access to, is often a privacy violation and a data risk. On the other hand, PII that is found in a database that only three production microservices have access to is expected,  but requires the data to be isolated within a secure VPC. 

2. Different Access Histories

If 100 employees have access to a sensitive shadow data lake, but only 10 people have actually accessed it in the last year. In this case, the solution would be to reduce permissions and implement stricter access controls. We’d also want to ensure that the data has the right retention policy, to reduce both risks and storage costs. Sentra’s risk score prioritization engine takes multiple data layers into account, including data access permissions, activity, sensitivity, movement and misconfigurations, giving enterprises greater visibility and control over their data risk management processes.

With regards to costs, Sentra’s Data Security Posture Management (DSPM) solution utilizes innovative features that make its scanning and classification solution about two or three orders of magnitude more cost efficient than legacy solutions. The first is the use of smart sampling, where Sentra is able to cluster multiple data units that share the same characteristics, and using intelligent sampling with statistical relevance, understand what sensitive data exists within such data assets that are grouped automatically. This is extremely powerful especially when dealing with data lakes that are often the size of dozens of petabytes, without compromising the solution coverage and accuracy.

Second, Sentra’s modern architecture leverages the benefits of cloud ephemeral resources, such as snapshotting and ephemeral compute workloads with a cloud-native orchestration technology that leverages the elasticity and the scale of the cloud. Sentra balances its resource utilization with the needs of the customer's business, providing advanced scan settings that are built and designed for the cloud. This allows teams to optimize cost according to their business needs, such as determining the frequency and sampling of scans, among more advanced features.

To summarize:

  1. Given the current macroeconomic climate, CISOs should find DSPMs like Sentra as an opportunity to increase their security and minimize their costs
  2. DSPM solutions like Sentra bring an important context - awareness to security teams and tools, allowing them to do better risk management and prioritization by focusing on whats important
  3. Data is likely to continue to be the most important asset of every business, as more organizations embrace the power of the cloud. Therefore, a DSPM will be a pivotal tool in realizing the true value of the data while ensuring it is always secured
  4. Accuracy is key and AI is an enabler for a good data classification tool

<blogcta-big>

Yair brings a wealth of experience in cybersecurity and data product management. In his previous role, Yair led product management at Microsoft and Datadog. With a background as a member of the IDF's Unit 8200 for five years, he possesses over 18 years of expertise in enterprise software, security, data, and cloud computing. Yair has held senior product management positions at Datadog, Digital Asset, and Microsoft Azure Protection.

Subscribe

Latest Blog Posts

Ward Balcerzak
Ward Balcerzak
January 14, 2026
4
Min Read

The Real Business Value of DSPM: Why True ROI Goes Beyond Cost Savings

The Real Business Value of DSPM: Why True ROI Goes Beyond Cost Savings

As enterprises scale cloud usage and adopt AI, the value of Data Security Posture Management (DSPM) is no longer just about checking a tool category box. It’s about protecting what matters most: sensitive data that fuels modern business and AI workflows.

Traditional content on DSPM often focuses on cost components and deployment considerations. That’s useful, but incomplete. To truly justify DSPM to executives and boards, security leaders need a holistic, outcome-focused view that ties data risk reduction to measurable business impact.

In this blog, we unpack the real, measurable benefits of DSPM, beyond just cost savings, and explain how modern DSPM strategies deliver rapid value far beyond what most legacy tools promise. 

1. Visibility Isn’t Enough - You Need Context

A common theme in DSPM discussions is that tools help you see where sensitive data lives. That’s important, but it’s only the first step. Real value comes from understanding context. Who can access the data, how it’s being used, and where risk exists in the wider security posture. Organizations that stop at discovery often struggle to prioritize risk and justify spend.

Modern DSPM solutions go further by:

  • Correlating data locations with access rights and usage patterns
  • Mapping sensitive data flows across cloud, SaaS, and hybrid environments
  • Detecting shadow data stores and unmanaged copies that silently increase exposure
  • Linking findings to business risk and compliance frameworks

This contextual intelligence drives better decisions and higher ROI because teams aren’t just counting sensitive data, they’re continuously governing it.

2. DSPM Saves Time and Shrinks Attack Surface Fast

One way DSPM delivers measurable business value is by streamlining functions that used to be manual, siloed, and slow:

  • Automated classification reduces manual tagging and human error
  • Continuous discovery eliminates periodic, snapshot-alone inventories
  • Policy enforcement reduces time spent reacting to audit requests

This translates into:

  • Faster compliance reporting
  • Shorter audit cycles
  • Rapid identification and remediation of critical risks

For security leaders, the speed of insight becomes a competitive advantage, especially in environments where data volumes grow daily and AI models can touch every corner of the enterprise.

3. Cost Benefits That Matter, but with Context

Lately I’m hearing many DSPM discussions break down cost components like scanning compute, licensing, operational expenses, and potential cloud savings. That’s a good start because DSPM can reduce cloud waste by identifying stale or redundant data, but it’s not the whole story.

 

Here’s where truly strategic DSPM differs:

Operational Efficiency

When DSPM tools automate discovery, classification, and risk scoring:

  • Teams spend less time on manual reports
  • Alert fatigue drops as noise is filtered
  • Engineers can focus on higher-value work

Breach Avoidance

Data breaches are expensive. According to industry studies, the average cost of a data breach runs into millions, far outweighing the cost of DSPM itself. A DSPM solution that prevents even one breach or major compliance failure pays for itself tenfold

Compliance as a Value Center

Rather than treating compliance as a cost center consider that:

  • DSPM reduces audit overhead
  • Provides automated evidence for frameworks like GDPR, HIPAA, PCI DSS
  • Improves confidence in reporting accuracy

That’s a measurable business benefit CFOs can appreciate and boards expect.

4. DSPM Reduces Risk Vector Multipliers Like AI

One benefit that’s often under-emphasized is how DSPM reduces risk vector multipliers, the factors that amplify risk exponentially beyond simple exposure counts.

In 2026 and beyond, AI systems are increasingly part of the risk profile. Modern DSPM help reduce the heightened risk from AI by:

  • Identifying where sensitive data intersects with AI training or inference pipelines
  • Governing how AI tools and assistants can access sensitive content
  • Providing risk context so teams can prevent data leakage into LLMs

This kind of data-centric, contextual, and continuous governance should be considered a requirement for secure AI adoption, no compromise.

5. Telling the DSPM ROI Story

The most convincing DSPM ROI stories aren’t spreadsheets, they’re narratives that align with business outcomes. The key to building a credible ROI case is connecting metrics, security impact, and business outcomes:

Metric Security Impact Business Outcome
Faster discovery & classification Fewer blind spots Reduced breach likelihood
Consistent governance enforcement Fewer compliance issues Lower audit cost
Contextual risk scoring Better prioritization Efficient resource allocation
AI governance Controlled AI exposure Safe innovation

By telling the story this way, security leaders can speak in terms the board and executives care about: risk reduction, compliance assurance, operational alignment, and controlled growth.

How to Evaluate DSPM for Real ROI

To capture tangible return, don’t evaluate DSPM solely on cost or feature checklists. Instead, test for:

1. Scalability Under Real Load

Can the tool discover and classify petabytes of data, including unstructured content, without degrading performance?

2. Accuracy That Holds Up

Poor classification undermines automation. True ROI requires consistent, top-performing accuracy rates.

3. Operational Cost Predictability

Beware of DSPM solutions that drive unexpected cloud expenses due to inefficient scanning or redundant data reads.

4. Integration With Enforcement Workflows

Visibility without action isn’t ROI. Your DSPM should feed DLP, IAM/CIEM, SIEM/SOAR, and compliance pipelines (ticketing, policy automation, alerts).

ROI Is a Journey, Not a Number

Costs matter, but value lives in context. DSPM is not just a cost center, it’s a force multiplier for secure cloud operations, AI readiness, compliance, and risk reduction. Instead of seeing DSPM as another tool, forward-looking teams view it as a fundamental decision support engine that changes how risk is measured, prioritized, and controlled.

Ready to See Real DSPM Value in Your Environment?

Download Sentra’s “DSPM Dirty Little Secrets” guide, a practical roadmap for evaluating DSPM with clarity, confidence, and production reality in mind.

👉 Download the DSPM Dirty Little Secrets guide now

Want a personalized walkthrough of how Sentra delivers measurable DSPM value?
👉 Request a demo

<blogcta-big>

Read More
Ofir Yehoshua
Ofir Yehoshua
January 13, 2026
3
Min Read

Why Infrastructure Security Is Not Enough to Protect Sensitive Data

Why Infrastructure Security Is Not Enough to Protect Sensitive Data

For years, security programs have focused on protecting infrastructure: networks, servers, endpoints, and applications. That approach made sense when systems were static and data rarely moved. It’s no longer enough.

Recent breach data shows a consistent pattern. Organizations detect incidents, restore systems, and close tickets, yet remain unable to answer the most important question regulators and customers often ask:

Where does my sensitive data reside?

Who or what has access to this data and are they authorized?

Which specific sensitive datasets were accessed or exfiltrated?

Infrastructure security alone cannot answer that question.

Infrastructure Alerts Detect Events, Not Impact

Most security tooling is infrastructure-centric by design. SIEMs, EDRs, NDRs, and CSPM tools monitor hosts, processes, IPs, and configurations. When something abnormal happens, they generate alerts.

What they do not tell you is:

  • Which specific datasets were accessed
  • Whether those datasets contained PHI or PII
  • Whether sensitive data was copied, moved, or exfiltrated

Traditional tools monitor the "plumbing" (network traffic, server logs, etc.) While they can flag that a database was accessed by an unauthorized IP, they often cannot distinguish between an attacker downloading a public template or downloading a table containing 50,000 Social Security numbers. An alert is not the same as understanding the exposure of the data stored inside it. Without that context, incident response teams are forced to infer impact rather than determine it.

The “Did They Access the Data?” Problem

This gap becomes pronounced during ransomware and extortion incidents.

In many cases:

  • Operations are restored from backups
  • Infrastructure is rebuilt
  • Access is reduced
  • (Hopefully!) attackers are removed from the environment

Yet organizations still cannot confirm whether sensitive data was accessed or exfiltrated during the dwell time.

Without data-level visibility:

  • Legal and compliance teams must assume worst-case exposure
  • Breach notifications expand unnecessarily
  • Regulatory penalties increase due to uncertainty, not necessarily damage

The inability to scope an incident accurately is not a tooling failure during the breach, it is a visibility failure that existed long before the breach occurred. Under regulations like GDPR or CCPA/CPRA, if an organization cannot prove that sensitive data wasn’t accessed during a breach, they are often legally required to notify all potentially affected parties. This ‘over-notification’ is costly and damaging to reputation.

Data Movement Is the Real Attack Vulnerability

Modern environments are defined by constant data movement:

  • Cloud migrations
  • SaaS integrations
  • App dev lifecycles
  • Analytics and ETL pipelines
  • AI and ML workflows

Each transition creates blind spots.

Legacy platforms awaiting migration often exist in a “wait state” with reduced monitoring. Data copied into cloud storage or fed into AI pipelines frequently loses lineage and classification context. Posture may vary and traditional controls no longer apply consistently. From an attacker’s perspective, these environments are ideal. From a defender’s perspective, they are blind spots.

Policies Are Not Proof

Most organizations can produce policies stating that sensitive data is encrypted, access-controlled, and monitored. Increasingly, regulators are moving from point-in-time audits to requiring continuous evidence of control.  

Regulators are asking for evidence:

  • Where does PHI live right now?
  • Who or what can access it?
  • How do you know this hasn’t changed since the last audit?

Point-in-time audits cannot answer those questions. Neither can static documentation. Exposure and access drift continuously, especially in cloud and AI-driven environments.

Compliance depends on continuous control, not periodic attestation.

What Data-Centric Security Actually Requires

Accurately proving compliance and scoping breach impact requires security visibility that is anchored to the data itself, not the infrastructure surrounding it.

At a minimum, this means:

  • Continuous discovery and classification of sensitive data
  • Consistent compliance reporting and controls across cloud, SaaS, On-Prem, and migration states
  • Clear visibility into which identities, services, and AI tools can access specific datasets
  • Detection and response signals tied directly to sensitive data exposure and movement

This is the operational foundation of Data Security Posture Management (DSPM) and Data Detection and Response (DDR). These capabilities do not replace infrastructure security controls; they close the gap those controls leave behind by connecting security events to actual data impact.

This is the problem space Sentra was built to address.

Sentra provides continuous visibility into where sensitive data lives, how it moves, and who or what can access it, and ties security and compliance outcomes to that visibility. Without this layer, organizations are forced to infer breach impact and compliance posture instead of proving it.

Why Data-Centric Security Is Required for Today's Compliance and Breach Response

Infrastructure security can detect that an incident occurred, but it cannot determine which sensitive data was accessed, copied, or exfiltrated. Without data-level evidence, organizations cannot accurately scope breaches, contain risk, or prove compliance, regardless of how many alerts or controls are in place. Modern breach response and regulatory compliance require continuous visibility into sensitive data, its lineage, and its access paths. Infrastructure-only security models are no longer sufficient.

Want to see how Sentra provides complete visibility and control of sensitive data?

Schedule a Demo

<blogcta-big>

Read More
Yair Cohen
Yair Cohen
January 9, 2026
3
Min Read
Data Security

How to Prevent Data Breaches in Healthcare and Protect PHI

How to Prevent Data Breaches in Healthcare and Protect PHI

Preventing data breaches in healthcare is no longer just about stopping cyberattacks. In 2026, the greater challenge is maintaining continuous visibility into where protected health information (PHI) lives, how it is accessed, and how it is reused across modern healthcare environments governed by HIPAA compliance requirements.

PHI no longer resides in a single system or under the control of one team. It moves constantly between cloud platforms, electronic health record (EHR) systems, business associates, analytics environments, and AI tools used throughout healthcare operations. While this data sharing enables better patient care and operational efficiency, it also introduces new healthcare cybersecurity risks that traditional, perimeter-based security controls were never designed to manage.

From Perimeter Security to Data-Centric PHI Protection

Many of the most damaging healthcare data breaches in recent years have shared a common root cause:

limited visibility into sensitive data and unclear ownership across shared environments.

Over-permissioned identities, long-lived third-party access, and AI systems interacting with regulated data without proper governance can silently expand exposure until an incident forces disruptive containment measures. Protecting PHI in 2026 requires a data-centric approach to healthcare data security. Instead of focusing only on where data is stored, organizations must continuously understand what sensitive data exists, who can access it, and how that access changes over time. This shift is foundational to effective HIPAA compliance, resilient incident response, and the safe adoption of AI in healthcare.

The Importance of Data Security in Healthcare

Healthcare organizations continue to face disproportionate risk from data breaches, with incidents carrying significant financial, operational, and reputational consequences. Recent industry analyses show that healthcare remains the costliest industry for data breaches, with the average breach costing approximately $7.4 million globally in 2025 and exceeding $10 million per incident in the U.S., driven by regulatory penalties and prolonged recovery efforts.

The scale and complexity of healthcare breaches have also increased. As of late 2025, hundreds of large healthcare data breaches affecting tens of millions of individuals had already been reported in the U.S. alone, including incidents tied to shared infrastructure and third-party service providers. These events highlight how a single exposure can rapidly expand across interconnected healthcare ecosystems.

Importantly, many recent breaches are no longer caused solely by external attacks. Instead, they stem from internal access issues such as over-permissioned identities, misdirected data sharing, and long-lived third-party access, risks now amplified by analytics platforms and AI tools interacting directly with regulated data. As healthcare organizations continue to adopt new technologies, protecting PHI increasingly depends on controlling how sensitive data is accessed, shared, and reused over time, not just where it is stored.

Healthcare Cybersecurity Regulations & Standards

For healthcare organizations, it is especially crucial to protect patient data and follow industry rules. Transitioning to the cloud shouldn't disrupt compliance efforts. But staying on top of strict data privacy regulations adds another layer of complexity to managing healthcare data.

Below are some of the top healthcare cybersecurity regulations relevant to the industry.


Health Insurance Portability and Accountability Act of 1996 (HIPAA)

HIPAA is pivotal in healthcare cybersecurity, mandating compliance for covered entities and business associates. It requires regular risk assessments and adherence to administrative, physical, and technical safeguards for electronic Protected Health Information (ePHI).

HIPAA, at its core, establishes national standards to protect sensitive patient health information from being disclosed without the patient's consent or knowledge. For leaders in healthcare data management, understanding the nuances of HIPAA's Titles and amendments is essential. Particularly relevant are Title II's (HIPAA Administrative Simplification), Privacy Rule, and Security Rule.

HHS 405(d)

HHS 405(d) regulations, under the Cybersecurity Act of 2015, establish voluntary guidelines for healthcare cybersecurity, embodied in the Healthcare Industry Cybersecurity Practices (HICP) framework. This framework covers email, endpoint protection, access management, and more.

Health Information Technology for Economic and Clinical Health (HITECH) Act

The HITECH Act, enacted in 2009, enhances HIPAA requirements, promoting the adoption of healthcare technology and imposing stricter penalties for HIPAA violations. It mandates annual cybersecurity audits and extends HIPAA regulations to business associates.

Payment Card Industry Data Security Standard (PCI DSS)

PCI DSS applies to healthcare organizations processing credit cards, ensuring the protection of cardholder data. Compliance is necessary for handling patient card information.

Quality System Regulation (QSR)

The Quality System Regulation (QSR), enforced by the FDA, focuses on securing medical devices, requiring measures like access prevention, risk management, and firmware updates. Proposed changes aim to align QSR with ISO 13485 standards.

Health Information Trust Alliance (HITRUST)

HITRUST, a global cybersecurity framework, aids healthcare organizations in aligning with HIPAA guidelines, offering guidance on various aspects including endpoint security, risk management, and physical security. Though not mandatory, HITRUST serves as a valuable resource for bolstering compliance efforts.

Preventing Data Breaches in Healthcare with Sentra

Sentra’s Data Security Posture Management (DSPM) automatically discovers and accurately classifies your sensitive patient data. By seamlessly building a well-organized data catalog, Sentra ensures all your patient data is secure, stored correctly and in compliance. The best part is, your data never leaves your environment.

Discover and Accurately Classify your High Risk Patient Data

Discover and accurately classify your high-risk patient data with ease using Sentra. Within minutes, Sentra empowers you to uncover and comprehend your Protected Health Information (PHI), spanning patient medical history, treatment plans, lab tests, radiology images, physician notes, and more. 

Seamlessly build a well-organized data catalog, ensuring that all your high-risk patient data is securely stored and compliant. As a cloud-native solution, Sentra enables you to scale security across your entire data estate. Your cloud data remains within your environment, putting you in complete control of your sensitive data at all times.

Sentra Reduces Data Risks by Controlling Posture and Access

Sentra is your solution for reducing data risks and preventing data breaches by efficiently controlling posture and access. With Sentra, you can enforce security policies for sensitive data, receiving alerts to violations promptly. It detects which users have access to sensitive Protected Health Information (PHI), ensuring transparency and accountability. Additionally, Sentra helps you manage third-party access risks by offering varying levels of access to different providers. Achieve least privilege access by leveraging Sentra's continuous monitoring and tracking capabilities, which keep tabs on access keys and user identities. This ensures that each user has precisely the right access permissions, minimizing the risk of unauthorized data exposure.

Stay on Top of Healthcare Data Regulations with Sentra

Sentra’s Data Security Posture Management (DSPM) solution streamlines and automates the management of your regulated patient data, preparing you for significant security audits. Gain a comprehensive view of all sensitive patient data, allowing our platform to automatically identify compliance gaps for proactive and swift resolution.

Sentra dashboard showing compliance frameworks
Sentra Dashboard shows the issues grouped by compliance frameworks, such as HIPAA and what the compliance posture is

Easily translate your compliance requirements for HIPAA, GDPR, and HITECH into actionable rules and policies, receiving notifications when data is copied or moved between regions. With Sentra, running compliance reports becomes a breeze, providing you with all the necessary evidence, including sensitive data types, regulatory controls, and compliance status for relevant regulatory frameworks.

Conclusion: From Perimeter Security to Continuous Data Governance

Healthcare organizations can no longer rely on perimeter-based controls or periodic audits to prevent data breaches. As PHI spreads across cloud platforms, business associates, and AI-driven workflows, the risk is no longer confined to a single system, it’s embedded in how data is accessed, shared, and reused.

Protecting PHI in 2026 requires continuous visibility into sensitive data and the ability to govern it throughout its lifecycle. This means understanding what regulated data exists, who has access to it, and how that access changes over time - across internal teams, third parties, and AI systems. Without this level of insight, compliance with HIPAA and other healthcare regulations becomes reactive, and incident response becomes disruptive by default.

A data-centric security model allows healthcare organizations to reduce their breach impact, limit regulatory exposure, and adopt AI safely without compromising patient trust. By shifting from static controls to continuous data governance, security and compliance teams can move from guessing where PHI lives to managing it with confidence.

To learn more about how you can enhance your data security posture, schedule a demo with one of our data security experts.

<blogcta-big>

Read More
Expert Data Security Insights Straight to Your Inbox
What Should I Do Now:
1

Get the latest GigaOm DSPM Radar report - see why Sentra was named a Leader and Fast Mover in data security. Download now and stay ahead on securing sensitive data.

2

Sign up for a demo and learn how Sentra’s data security platform can uncover hidden risks, simplify compliance, and safeguard your sensitive data.

3

Follow us on LinkedIn, X (Twitter), and YouTube for actionable expert insights on how to strengthen your data security, build a successful DSPM program, and more!

Before you go...

Get the Gartner Customers' Choice for DSPM Report

Read why 98% of users recommend Sentra.

White Gartner Peer Insights Customers' Choice 2025 badge with laurel leaves inside a speech bubble.