Sentra Launches Breakthrough AI Classification Capabilities!
All Resources
In this article:
minus iconplus icon
Share the Blog

Why Legacy Data Classification Tools Don't Work Well in the Cloud (But DSPM Does)

September 7, 2023
5
Min Read
Data Security

Data security teams are always trying to understand where their sensitive data is. Yet this goal has remained out of reach for a number of reasons.

The main difficulty is creating a continuously updated data catalog of all production and cloud data. Creating this catalog would involve:

  1.  Identifying everyone in the organization with knowledge of any data stores, with visibility into its contents
  1. Connecting a data classification tool to these data stores
  1. Ensure there’s network connectivity by configuring network and security policies
  1. Confirm that business-critical production systems using each data source won’t be negatively affected, causing damage to performance or availability

Having a process this complex requires a major investment of resources, long workflows, and will still probably not provide the full coverage organizations are looking for. Many so-called successful implementations of such solutions will prove unreliable and too difficult to maintain after a short period of time.

Another pain with a legacy data classification solution is accuracy. Data security professionals are all too aware of the problem of false positives (i.e. wrong classification and data findings) and false negatives (i.e. missing classification of sensitive data that remains unknown). This is mainly due to two reasons.

 

  • Legacy classification solutions rely solely on patterns, such as regular expressions, to identify sensitive data, which falls short in both unstructured data and structured data. 
  • These solutions don’t understand the business context around the data, such as how it is being used, by whom, for what purposes and more.

Without the business context, security teams can’t get any actionable items to remove or protect sensitive data against data risks and security breaches.

Lastly, there’s the reason behind high operational costs. Legacy data classification solutions were not built for the cloud, where each data read/write and network operation has a price tag.

The cloud also offers a much more cost efficient data storage solution and advanced data services that causes organizations to store much more data than they did before moving to the cloud. On the other hand, the public cloud providers also offer a variety of cloud-native APIs and mechanisms that can extremely benefit a data classification and security solution, such as automated backups, cross account federation, direct access to block storage, storage classes, compute instance types, and much more. However, legacy data classification tools, that were not built for the cloud, will completely ignore those benefits and differences, making them an extremely expensive solution for cloud-native organizations.

DSPM: Built to Solve Data Classification in the Cloud 

These challenges have led to the growth of a new approach to securing cloud data - Data Security Posture Management, or DSPM. Sentra’s DSPM  is able to provide full coverage and an up-to-date data catalog with classification of sensitive data, without any complex deployment or operational work involved. This is achieved thanks to a cloud-native agentless architecture, using cloud-native APIs and mechanisms.

A good example of this approach is how Sentra’s DSPM architecture leverages the public cloud mechanism of automated backups for compute instances, block storage, and more. This allows Sentra to securely run its robust discovery and classification technology from within the customer’s premises, in any VPC or subscription/account of the customer’s choice.

This offers a number of benefits:

  1. The organization does not need to change any existing infrastructure configuration, network policies, or security groups.
  1. There’s no need to provide individual credentials for each data source in order for Sentra to discover and scan it.
  1. There is never a performance impact on the actual workloads that are compute-based/bounded, such as virtual machines, that run in production environments. In fact, Sentra’s scanning will never connect via network or application layers to those data stores.

Another benefit of a DSPM built for the cloud is classification accuracy.  Sentra’s DSPM provides an unprecedented level of accuracy thanks to more modern and cloud-native capabilities.This starts with advanced statistical relevance for structured data, enabling our classification engine to understand with high confidence that sensitive data is found within a specific column or field, without scanning every row in a large table.

Sentra leverages even more advanced algorithms for key-value stores and document databases. For unstructured data, the use of AI and LLM -based algorithms unlock tremendous accuracy in understanding and detecting sensitive data types by understanding the context within the data itself. Lastly, the combination of data-centric and identity-centric security approaches provides greater context that allows Sentra’s users to know what actions they should take to remediate data risks when it comes to classification.

Here are two examples of how we apply this context:

1. Different Types of Databases

Personal Identifiable Information (PII) that is found in a database in which only users from the Analytics team have access to, is often a privacy violation and a data risk. On the other hand, PII that is found in a database that only three production microservices have access to is expected,  but requires the data to be isolated within a secure VPC. 

2. Different Access Histories

If 100 employees have access to a sensitive shadow data lake, but only 10 people have actually accessed it in the last year. In this case, the solution would be to reduce permissions and implement stricter access controls. We’d also want to ensure that the data has the right retention policy, to reduce both risks and storage costs. Sentra’s risk score prioritization engine takes multiple data layers into account, including data access permissions, activity, sensitivity, movement and misconfigurations, giving enterprises greater visibility and control over their data risk management processes.

With regards to costs, Sentra’s Data Security Posture Management (DSPM) solution utilizes innovative features that make its scanning and classification solution about two or three orders of magnitude more cost efficient than legacy solutions. The first is the use of smart sampling, where Sentra is able to cluster multiple data units that share the same characteristics, and using intelligent sampling with statistical relevance, understand what sensitive data exists within such data assets that are grouped automatically. This is extremely powerful especially when dealing with data lakes that are often the size of dozens of petabytes, without compromising the solution coverage and accuracy.

Second, Sentra’s modern architecture leverages the benefits of cloud ephemeral resources, such as snapshotting and ephemeral compute workloads with a cloud-native orchestration technology that leverages the elasticity and the scale of the cloud. Sentra balances its resource utilization with the needs of the customer's business, providing advanced scan settings that are built and designed for the cloud. This allows teams to optimize cost according to their business needs, such as determining the frequency and sampling of scans, among more advanced features.

To summarize:

  1. Given the current macroeconomic climate, CISOs should find DSPMs like Sentra as an opportunity to increase their security and minimize their costs
  2. DSPM solutions like Sentra bring an important context - awareness to security teams and tools, allowing them to do better risk management and prioritization by focusing on whats important
  3. Data is likely to continue to be the most important asset of every business, as more organizations embrace the power of the cloud. Therefore, a DSPM will be a pivotal tool in realizing the true value of the data while ensuring it is always secured
  4. Accuracy is key and AI is an enabler for a good data classification tool

<blogcta-big>

Yair brings a wealth of experience in cybersecurity and data product management. In his previous role, Yair led product management at Microsoft and Datadog. With a background as a member of the IDF's Unit 8200 for five years, he possesses over 18 years of expertise in enterprise software, security, data, and cloud computing. Yair has held senior product management positions at Datadog, Digital Asset, and Microsoft Azure Protection.

Subscribe

Latest Blog Posts

Ward Balcerzak
Ward Balcerzak
December 11, 2025
3
Min Read

US State Privacy Laws 2026: DSPM Compliance Requirements & What You Need to Know

US State Privacy Laws 2026: DSPM Compliance Requirements & What You Need to Know

By 2026, American data privacy will look very different as a wave of new state laws redefines what it means to protect sensitive information. Organizations face a regulatory maze: more than 20 states will soon require not only “reasonable security” but also Data Protection Impact Assessments (DPIAs), explicit limits on data collection, and, in some cases, detailed data inventories. These requirements are quickly becoming standard, and ignoring them simply isn’t an option. The risk of penalties and enforcement actions is climbing fast.

But through all these changes, one major question remains: How can any organization comply if it doesn’t even know where its most sensitive data is? Data Security Posture Management (DSPM) has become the solution, making data visibility and automation central for meeting ongoing compliance needs.

Mapping the New Wave of State Privacy Mandates

Several state privacy laws going into effect in 2025 and 2026 are raising the stakes for compliance. Kentucky, Indiana, and Rhode Island’s new laws, effective January 1, 2026, require both security measures and DPIAs for handling high-risk or sensitive data. Minnesota’s law stands out even more: it moves past earlier vague “reasonable” security language and mandates comprehensive data inventories.

Other key states include Minnesota, which explicitly requires data inventories, Maryland with strict data minimization rules, and Tennessee, which gives organizations an affirmative defense if they’ve adopted a NIST-aligned privacy program. These requirements mean organizations now need to track what data they collect, know exactly where it’s stored, and show evidence of compliance when asked. If your organization operates in more than one state, keeping up with this web of laws will soon become impossible without dedicated solutions (US consumer privacy laws 2025 update).

Why Data Visibility is Now Foundational to Compliance

To meet DPIA, minimization, and security safeguard rules, you need full visibility into where sensitive or regulated data lives - and how it moves across your environment. Recent privacy laws are moving closer to GDPR-like standards, with DPIAs required not only for biometric data but also for broad categories like targeted advertising and profiling. Minnesota leads with its clear requirement for full data inventories, setting the standard that you can’t prove compliance unless you understand your data (US cybersecurity and data privacy review and outlook 2025).

This shift puts DSPM front and center: you now need ongoing discovery and classification of your entire sensitive data footprint. Without a strong data foundation, organizations will find it hard to complete DPIAs, handle audits, or defend themselves in investigations.

Automation: The Only Viable Path for Assessment and Audit Readiness

State privacy rules are getting more complicated, and many enforcement authorities are shortening or removing 'right-to-cure' periods. That means manual compliance simply won’t keep up. Automation is now the only way to manage compliance as regulations tighten (5 trends to watch: 2025 US data privacy & cybersecurity).

With DSPM and automation, organizations get ongoing discovery, real-time data classification, and instant evidence collection - all required for fast DPIAs and responsive audits. For companies facing regulators or preparing for multi-state oversight, this means you already have the proof and documentation you need. Relying on spreadsheets or one-time assessments at this point only increases your risk.

Sentra: Your Strategic Bridge to Privacy Law Compliance

Sentra’s DSPM platform is built to tackle these expanding privacy law requirements. The agentless platform covers AWS, Azure, GCP, SaaS, and hybrid environments, removing both visibility gaps and the hassle found in older solutions (Sentra: DSPM for compliance use cases).

With continuous, automated discovery and data classification, you always know exactly where your sensitive data is, how it moves, and how it’s being protected. Sentra’s integrated Data Detection & Response (DDR) catches and fixes risks or policy violations early, closing gaps before regulators - or attackers - can take advantage (Sensitive data exposure insight). Combined with clear reporting and on-demand audit documentation, Sentra helps you meet new state privacy laws and stay audit-ready, even as your business or data needs change.

Conclusion

The arrival of new state privacy laws in 2025 and 2026 is changing how organizations must handle sensitive data. Security safeguards, DPIAs, minimization, and full inventories are now required - not just nice-to-have.

DSPM is now a compliance must-have. Without complete data visibility and automation, following the web of state rules isn’t difficult - it’s impossible. Sentra’s agentless, multi-cloud platform keeps your organization continuously informed, giving compliance, security, and privacy teams the control they need to keep up with new regulations.

Want to see how your organization stacks up for 2026 laws? Book a DSPM Compliance Readiness Assessment or check out Sentra’s automated DPIA tools today.

<blogcta-big>

Read More
David Stuart
David Stuart
Gilad Golani
Gilad Golani
December 4, 2025
3
Min Read

Zero Data Movement: The New Data Security Standard that Eliminates Egress Risk

Zero Data Movement: The New Data Security Standard that Eliminates Egress Risk

Cloud adoption and the explosion of data have boosted business agility, but they’ve also created new headaches for security teams. As companies move sensitive information into multi-cloud and hybrid environments, old security models start to break down. Shuffling data for scanning and classification adds risk, piles on regulatory complexity, and drives up operational costs.

Zero Data Movement (ZDM) offers a new architectural approach, reshaping how advanced Data Security Posture Management (DSPM) platforms provide visibility, protection, and compliance. This post breaks down what makes ZDM unique, why it matters for security-focused enterprises, and how Sentra provides an innovative agentless and scalable design that is genuinely a zero data movement DSPM .

Defining Zero Data Movement Architecture

Zero Data Movement (ZDM) sets a new standard in data security. The premise is straightforward: sensitive data should stay in its original environment for security analysis, monitoring, and enforcement. Older models require copying, exporting, or centralizing data to scan it, while ZDM ensures that all security actions happen directly where data resides.

ZDM removes egress risk -shrinking the attack surface and reducing regulatory issues. For organizations juggling large cloud deployments and tight data residency rules, ZDM isn’t just an improvement - it's essential. Groups like the Cloud Security Alliance and new privacy regulations are moving the industry toward designs that build in privacy and non-stop protection.

Risks of Data Movement: Compliance, Cost, and Egress Exposure

Every time data is copied, exported, or streamed out of its native environment, new risks arise. Data movement creates challenges such as:

  • Egress risk: Data at rest or in transit outside its original environment  increases risk of breach, especially as those environments may be less secure.
  • Compliance and regulatory exposure: Moving data across borders or different clouds can break geo-fencing and privacy controls, leading to potential violations and steep fines.
  • Loss of context and control: Scattered data makes it harder to monitor everything, leaving gaps in visibility.
  • Rising total cost of ownership (TCO): Scanning and classification can incur heavy cloud compute costs - so efficiency matters.  Exporting or storing data, especially shadow data, drives up storage, egress, and compliance costs as well.

As more businesses rely on data, moving it unnecessarily only increases the risk - especially with fast-changing cloud regulations.

Legacy and Competitor Gaps: Why Data Movement Still Happens

Not every security vendor practices true zero data movement, and the differences are notable. Products from Cyera, Securiti, or older platforms still require temporary data exporting or duplication for analysis. This might offer a quick setup, but it exposes users to egress risks, insider threats, and compliance gaps - problems that are worse in regulated fields.

Competitors like Cyera often rely on shortcuts that fall short of ZDM’s requirements. Securiti and similar providers depend on connectors, API snapshots, or central data lakes, each adding potential risks and spreading data further than necessary. With ZDM, security operations like monitoring and classification happen entirely locally, removing the need to trust external storage or aggregation. For more detail on how data movement drives up risk.

The Business Value of Zero Data Movement DSPM

Zero data movement DSPM changes the equation for businesses:

  • Designed for compliance: Data remains within controlled environments, shrinking audit requirements and reducing breach likelihood.
  • Lower TCO and better efficiency: Eliminates hidden expenses from extra storage, duplicate assets, and exporting to external platforms.
  • Regulatory clarity and privacy: Supports data sovereignty, cross-border rules, and new zero trust frameworks with an egress-free approach.

Sentra’s agentless, cloud-native DSPM provides these benefits by ensuring sensitive data is never moved or copied. And Sentra delivers these benefits at scale - across multi-petabyte enterprise environments - without the performance and cost tradeoffs others suffer from. Real scenarios show the results: financial firms keep audit trails without data ever leaving allowed regions. Healthcare providers safeguard PHI at its source. Global SaaS companies secure customer data at scale, cost-effectively while meeting regional rules.

Future-Proofing Data Security: ZDM as the New Standard

With data volumes expected to hit 181 zettabytes in 2025, older protection methods that rely on moving data can’t keep up. Zero data movement architecture meets today's security demands and supports zero trust, metadata-driven access, and privacy-first strategies for the future.

Companies wanting to avoid dead ends should pick solutions that offer unified discovery, classification and policy enforcement without egress risk. Sentra’s ZDM architecture makes this possible, allowing organizations to analyze and protect information where it lives, at cloud speed and scale.

Conclusion

Zero Data Movement is more than a technical detail - it's a new architectural standard for any organization serious about risk control, compliance, and efficiency. As data grows and regulations become stricter, the old habits of moving, copying, or centralizing sensitive data will no longer suffice.

Sentra stands out by delivering a zero data movement DSPMplatform that's agentless, real-time, and truly multicloud. For security leaders determined to cut egress risk, lower compliance spending, and get ahead in privacy, ZDM is the clear path forward.

<blogcta-big>

Read More
Charles Garlow
Charles Garlow
December 3, 2025
3
Min Read

Petabyte Scale is a Security Requirement (Not a Feature): The Hidden Cost of Inefficient DSPM

Petabyte Scale is a Security Requirement (Not a Feature): The Hidden Cost of Inefficient DSPM

As organizations scramble to secure their sprawling cloud environments and deploy AI, many are facing a stark realization: handling petabyte-scale data is now a basic security requirement. With sensitive information multiplying across multiple clouds, SaaS, and AI-driven platforms, security leaders can't treat true data security at scale as a simple add-on or upgrade.

At the same time, speeding up digital transformation means higher and less visible operational costs for handling this data surge. Older Data Security Posture Management (DSPM) tools, especially those boasting broad, indiscriminate scans as evidence of their scale, are saddling organizations with rising cloud bills, slowdowns, and dangerous gaps in visibility. The costs of securing petabyte-scale data are now economic and technical, demanding efficiency instead of just scale. Sentra solves this with a highly-efficient cloud-native design, delivering 10x lower cloud compute costs.

Why Petabyte Scale is a Security Requirement

Data environments have exploded in both size and complexity. For Fortune 500 companies, fast-growing SaaS providers, and global organizations, data exists across public and hybrid clouds, business units, regions, and a stream of new applications.

Regulations such as GDPR, HIPAA, and rules from the SEC now demand current data inventories and continuous proof of risk management. In this environment, defending data at the petabyte level is now essential. Failing to classify and monitor this data efficiently means risking compliance and losing business trust. Security teams are feeling the strain. I meet security teams everyday and too many of them still struggle with data visibility and are already seeing the cracks forming in their current toolset as data scales.

The Hidden Cost of Inefficient DSPM: API Calls and Egress Bills

How DSPM tools perform scanning and discovery drives the real costs of securing petabyte-scale data. Some vendors highlight their capacity to scan multiple petabytes daily. But here's the reality: scanning everything, record by record, relying on huge numbers of API calls, becomes very expensive as your data estate grows.

Every API call can rack up costs, and all the resulting data egress and compute add up too. Large organizations might spend tens of thousands of dollars each month just to track what’s in their cloud. Even worse, older "full scan" DSPM strategies jam up operations with throttling, delays, and a flood of alerts that bury real risk. These legacy approaches simply don’t scale, and organizations relying on them end up paying more while knowing less.

 

Cyera’s "Petabyte Scale" Claims: At What Cloud Cost?

Cyera promotes its tool as an AI-native, agentless DSPM that can scan as much as 2 petabytes daily . While that’s an impressive technical achievement, the strategy of scanning everything leads directly to massive cloud infrastructure costs: frequent API hits, heavy egress, and big bills from AWS, Azure, and GCP.

At scale, these charges don’t just appear on invoices, they can actually stop adoption and limit security’s effectiveness. Cloud operations teams face API throttling, slow results, and a surge in remediation tickets as risks go unfiltered. In these fast-paced environments, recognizing the difference between a real threat and harmless data comes down to speed. The Bedrock Security blog points out how inefficient setups buckle under this weight, leaving teams stuck with lagging visibility and more operational headaches.

Sentra’s 10x Efficiency: Optimized Scanning for Real-World Scale

Sentra takes another route to manage the costs of securing petabyte-scale data. By combining agentless discovery with scanning guided by context and metadata, Sentra uses pattern recognition and an AI-driven clustering algorithm designed to detect machine-generated content—such as log files, invoices, and similar data types. By intelligently sampling data within each cluster, Sentra delivers efficient scanning while reducing scanning costs.

This approach enables data scanning to be prioritized based on risk and business value, rather than wasting time and money scanning the same data over and over again, skipping unnecessary API calls, lowering egress, and keeping cloud bills in check.

Large organizations gain a 10x efficiency edge: quicker classification of data, instant visibility into actual threats, lower operational expenses, and less demand on the network. By focusing attention only where it matters, Sentra matches data security posture management to the demands of current cloud growth and regulatory requirements.

This makes it possible for organizations to hit regulatory and audit targets without watching expenses spiral or opening up security gaps.Sentra offers multiple sampling levels, Quick (default), Moderate, Thorough, and Full, allowing customers to tailor their scanning strategy to balance cost and accuracy. For example, a highly regulated environment can be configured for a full scan, while less-regulated environments can use more efficient sampling. Petabyte-scale security gives the user complete control of their data enterprise and turns into something operationally and financially sustainable, rather than a technical milestone with a hidden cost. 

Efficiency is Non-Negotiable

Fortune 500 companies and digital-first organizations can’t treat efficiency as optional. Inefficient DSPM tools pile on costs, drain resources, and let vulnerabilities slip through, turning their security posture into a liability once scale becomes a factor. Sentra’s platform shows that efficiency is security: with targeted scanning, real context, and unified detection and response, organizations gain clarity and compliance while holding down expenses.

Don’t let your data protection approach crumble under petabyte-scale pressure. See what Sentra can do, reduce costs, and keep essential data secure - before you end up responding to breaches or audit failures.

Conclusion

Securing data at the petabyte level isn't some future aspiration - it's the standard for enterprises right now. Treating it as a secondary feature isn’t just shortsighted; it puts your company at risk, financially and operationally.

The right DSPM architecture brings efficiency, not just raw scale. Sentra delivers real-time, context-rich security posture with far greater efficiency, so your protection and your cloud spending can keep up with your growing business. Security needs to grow along with scale. Rising costs and new risks shouldn’t grow right alongside it.

Want to see how your current petabyte security posture compares? Schedule a demo and see Sentra’s efficiency for yourself.

<blogcta-big>

Read More
decorative ball
Expert Data Security Insights Straight to Your Inbox
What Should I Do Now:
1

Get the latest GigaOm DSPM Radar report - see why Sentra was named a Leader and Fast Mover in data security. Download now and stay ahead on securing sensitive data.

2

Sign up for a demo and learn how Sentra’s data security platform can uncover hidden risks, simplify compliance, and safeguard your sensitive data.

3

Follow us on LinkedIn, X (Twitter), and YouTube for actionable expert insights on how to strengthen your data security, build a successful DSPM program, and more!

Before you go...

Get the Gartner Customers' Choice for DSPM Report

Read why 98% of users recommend Sentra.

Gartner Certificate for Sentra