All Resources
In this article:
minus iconplus icon
Share the Article

How Sentra Built a Data Security Platform for the AI Era

October 21, 2024
5
 Min Read
Data Sprawl

In just three years, Sentra has witnessed the rapid evolution of the data security landscape. What began with traditional on-premise Data Loss Prevention (DLP) solutions has shifted to a cloud-native focus with Data Security Posture Management (DSPM). This marked a major leap in how organizations protect their data, but the evolution didn’t stop there.

The next wave introduced new capabilities like Data Detection and Response (DDR) and Data Access Governance (DAG), pushing the boundaries of what DSPM could offer. Now, we’re entering an era where SaaS Security Posture Management (SSPM) and Artificial Intelligence Security Posture Management (AI-SPM) are becoming increasingly important.

 

These shifts are redefining what we’ve traditionally called Data Security Platform (DSP) solutions, marking a significant transformation in the industry. The speed of this evolution speaks to the growing complexity of data security needs and the innovation required to meet them.

The Evolution of Data Security

What Is Driving The Evolution of Data Security?

The evolution of the data security market is being driven by several key macro trends:

  • Digital Transformation and Data Democratization: Organizations are increasingly embracing digital transformation, making data more accessible to various teams and users.
  • Rapid Cloud Adoption: Businesses are moving to the cloud at an unprecedented pace to enhance agility and responsiveness.
  • Explosion of Siloed Data Stores: The growing number of siloed data stores, diverse data technologies, and an expanding user base is complicating data management.
  • Increased Innovation Pace: The rise of artificial intelligence (AI) is accelerating the pace of innovation, creating new opportunities and challenges in data security.
  • Resource Shortages: As organizations grow, the need for automation to keep up with increasing demands has never been more critical.
  • Stricter Data Privacy Regulations: Heightened data privacy laws and stricter breach disclosure requirements are adding to the urgency for robust data protection measures.
Rapid cloud adoption

Similarly, there has been an evolution in the roles involved with the management, governance, and protection of data. These roles are increasingly intertwined and co-dependent as described in our recent blog entitled “Data: The Unifying Force Behind Disparate GRC Functions”. We identify that today each respective function operates within its own domain yet shares ownership of data at its core. As the co-dependency on data increases so does the need for a unifying platform approach to data security.

Sentra has adapted to these changes to align our messaging with industry expectations, buyer requirements, and product/technology advancements.

A Data Security Platform for the AI Era

Sentra is setting the standard with the leading Data Security Platform for the AI Era.

With its cloud-native design, Sentra seamlessly integrates powerful capabilities like Data Discovery and Classification, Data Security Posture Management (DSPM), Data Access Governance (DAG), and Data Detection and Response (DDR) into a comprehensive solution. This allows our customers to achieve enterprise-scale data protection while addressing critical questions about their data.

data security cycle - visibility, context, access, risks, threats

What sets Sentra apart is its connector-less, cloud-native architecture, which effortlessly scales to accommodate multi-petabyte, multi-cloud environments without the administrative burdens typical of connector-based legacy systems. These more labor-intensive approaches often struggle to keep pace and frequently overlook shadow data.

Moreover, Sentra harnesses the power of AI and machine learning to accurately interpret data context and classify data. This not only enhances data security but also ensures the privacy and integrity of data used in Gen- AI applications. We recognized the critical need for accurate and automated Data Discovery and Classification, along with Data Security Posture Management (DSPM), to address the risks associated with data proliferation in a multi-cloud landscape. Based on our customers' evolving needs, we expanded our capabilities to include DAG and DDR. These tools are essential for managing data access, detecting emerging threats, and improving risk mitigation and data loss prevention.

DAG maps the relationships between cloud identities, roles, permissions, data stores, and sensitive data classes. This provides a complete view of which identities and data stores in the cloud may be overprivileged. Meanwhile, DDR offers continuous threat monitoring for suspicious data access activity, providing early warnings of potential breaches.

We grew to support SaaS data repositories including Microsoft 365 (SharePoint, OneDrive, Teams, etc.), G Suite (Gdrive) and leveraged AI/ML to accurately classify data hidden within unstructured data stores.

Sentra’s accurate data sensitivity tagging and granular contextual details allows organizations to enhance the effectiveness of their existing tools, streamline workflows, and automate remediation processes. Additionally, Sentra offers pre-built integrations with various analysis and response tools used across the enterprise, including data catalogs, incident response (IR) platforms, IT service management (ITSM) systems, DLPs, CSPMs, CNAPPs, IAM, and compliance management solutions.

How Sentra Redefines Enterprise Data Security Across Clouds

Sentra has architected a solution that can deliver enterprise-scale data security without the traditional constraints and administrative headaches. Sentra’s cloud-native design easily scales to petabyte data volumes across multi-cloud and on-premises environments. 

The Sentra platform incorporates a few major differentiators that distinguish it from other solutions including:


  • Novel Scanning Technology: Sentra uses inventory files and advanced automatic grouping to create a new entity called “Data Asset”, a group of files that have the same structure, security posture and business function. Sentra automatically reduces billions of files into thousands of data assets (that represent different types of data) continuously, enabling full coverage of 100% of cloud data of petabytes to just several hundreds of thousands of files which need to be scanned (5-6 orders of magnitude less scanning required). Since there is no random sampling involved in the process, all types of data are fully scanned and for differentials on a daily basis. Sentra supports all leading IaaS, PaaS, SaaS and On-premises stores.
  • AI-powered Autonomous Classification: Sentra’s use of AI-powered classification provides approximately 97% classification accuracy of data within unstructured documents and structured data. Additionally, Sentra provides rich data context (distinct from data class or type) about multiple aspects of files, such as data subject residency, business impact, synthetic or real data, and more. Further, Sentra’s classification uses LLMs (inside the customer environment) to automatically learn and adapt based on the unique business context, false positive user inputs, and allows users to add AI-based classifiers using natural language (powered by LLMs). This autonomous learning means users don’t have to customize the system themselves, saving time and helping to keep pace with dynamic data.
  • Data Perimeters / Movement: Sentra DataTreks™ provides the ability to understand data perimeters automatically and detect when data is moving (e.g. copied partially or fully) to a different perimeter. For example, it can detect data similarity/movement from a well protected production environment to a less- protected development environment. This is important for highly dynamic cloud environments and promoting secure data democratization.
  • Data Detection and Response (DDR): Sentra’s DDR module highlights anomalies such as unauthorized data access or unusual data movements in near real-time, integrating alerts into existing tools like ServiceNow or JIRA for quick mitigation.
  • Easy Customization: In addition to ‘learning’ of a customer's unique data types, with Sentra it’s easy to create new classifiers, modify policies, and apply custom tagging labels.

As AI reshapes the digital landscape, it also creates new vulnerabilities, such as the risk of data exposure through AI training processes. The Sentra platform addresses these AI-specific challenges, while continuing to tackle the persistent security issues from the cloud era, providing an integrated solution that ensures data security remains resilient and adaptive.

Use Cases: Solving Complex Problems with Unique Solutions

Sentra’s unique capabilities allow it to serve a broad spectrum of challenging data security, governance and compliance use cases. Two frequently cited DSPM use cases are preventing data breaches and facilitating GenAI technology deployments. With the addition of data privacy compliance, these represent the top three.  

Let's dive deeper into how Sentra's platform addresses specific challenges:

Data Risk Visibility

Sentra’s Data Security Platform enables continuous analysis of your security posture and automates risk assessments across your entire data landscape. It identifies data vulnerabilities across cloud-native and unmanaged databases, data lakes, and metadata catalogs. By automating the discovery and classification of sensitive data, teams can prioritize actions based on the sensitivity and policy guidelines related to each asset. This automation not only saves time but also enhances accuracy, especially when leveraging large language models (LLMs) for detailed data classification.

Security and Compliance Audit

Sentra Data Security Platform can also automate the process of identifying regulatory violations and ensuring adherence to custom and pre-built policies (including policies that map to common compliance frameworks). 

The platform automates the identification of regulatory violations, ensuring compliance with both custom and established policies. It helps keep sensitive data in the right environments, preventing it from traveling to regions that violate retention policies or lack encryption. Unlike manual policy implementation, which is prone to errors, Sentra’s automated approach significantly reduces the risk of misconfiguration, ensuring that teams don’t miss critical activities.

Data Access Governance

Sentra enhances data access governance (DAG) by enforcing appropriate permissions for all users and applications within an organization. By automating the monitoring of access permissions, Sentra mitigates risks such as excessive permissions and unauthorized access. This ensures that teams can maintain least privilege access control, which is essential in a growing data ecosystem.

Minimizing Data and Attack Surface

The platform’s capabilities also extend to detecting unmanaged sensitive data, such as shadow or duplicate assets. By automatically finding and classifying these unknown data points, Sentra minimizes the attack surface, controls data sprawl, and enhances overall data protection.

Secure and Responsible AI

As organizations build new Generative AI applications, Sentra extends its protection to LLM applications, treating them as part of the data attack surface. This proactive management, alongside monitoring of prompts and outputs, addresses data privacy and integrity concerns, ensuring that organizations are prepared for the future of AI technologies.

Insider Risk Management

Sentra effectively detects insider risks by monitoring user access to sensitive information across various platforms. Its Data Detection and Response (DDR) capabilities provide real-time threat detection, analyzing user activity and audit logs to identify unusual patterns.

Data Loss Prevention (DLP)

The platform integrates seamlessly with endpoint DLP solutions to monitor all access activities related to sensitive data. By detecting unauthorized access attempts from external networks, Sentra can prevent data breaches before they escalate, all while maintaining a positive user experience.

Sentra’s robust Data Security Platform offers solutions for these use cases and more, empowering organizations to navigate the complexities of data security with confidence. With a comprehensive approach that combines visibility, governance, and protection, Sentra helps businesses secure their data effectively in today’s dynamic digital environment.

From DSPM to a Comprehensive Data Security Platform

Sentra has evolved beyond being the leading Data Security Posture Management (DSPM) solution; we are now a Cloud-native Data Security Platform (DSP). Today, we offer holistic solutions that empower organizations to locate, secure, and monitor their data against emerging threats. Our mission is to help businesses move faster and thrive in today’s digital landscape.

What sets the Sentra DSP apart is its unique layer of protection, distinct from traditional infrastructure-dependent solutions. It enables organizations to scale their data protection across ever-expanding multi-cloud environments, meeting enterprise demands while adapting to ever-changing business needs—all without placing undue burdens on the teams managing it.

And we continue to progress. In a world rapidly evolving with advancements in AI, the Sentra Data Security Platform stands as the most comprehensive and effective solution to keep pace with the challenges of the AI age. We are committed to developing our platform to ensure that your data security remains robust and adaptive.

 Sentra's Cloud-Native Data Security Platform provides comprehensive data protection for the entire data estate.
 Sentra Cloud-Native Data Security Platform provides comprehensive data protection for the entire data estate.

David Stuart is Senior Director of Product Marketing for Sentra, a leading cloud-native data security platform provider, where he is responsible for product and launch planning, content creation, and analyst relations. Dave is a 20+ year security industry veteran having held product and marketing management positions at industry luminary companies such as Symantec, Sourcefire, Cisco, Tenable, and ZeroFox. Dave holds a BSEE/CS from University of Illinois, and an MBA from Northwestern Kellogg Graduate School of Management.

Subscribe

Latest Blog Posts

Ron Reiter
Ron Reiter
January 15, 2026
8
Min Read

Cloud Vulnerability Management: Best Practices, Tools & Frameworks

Cloud Vulnerability Management: Best Practices, Tools & Frameworks

Cloud environments evolve continuously - new workloads, APIs, identities, and services are deployed every day. This constant change introduces security gaps that attackers can exploit if left unmanaged.

Cloud vulnerability management helps organizations identify, prioritize, and remediate security weaknesses across cloud infrastructure, workloads, and services to reduce breach risk, protect sensitive data, and maintain compliance.

This guide explains what cloud vulnerability management is, why it matters in 2026, common cloud vulnerabilities, best practices, tools, and more.

What is Cloud Vulnerability Management?

Cloud vulnerability management is a proactive approach to identifying and mitigating security vulnerabilities within your cloud infrastructure, enhancing cloud data security. It involves the systematic assessment of cloud resources and applications to pinpoint potential weaknesses that cybercriminals might exploit. By addressing these vulnerabilities, you reduce the risk of data breaches, service interruptions, and other security incidents that could have a significant impact on your organization.

Why Cloud Vulnerability Management Matters in 2026

Cloud vulnerability management matters in 2026 because cloud environments are more dynamic, interconnected, and data-driven than ever before, making traditional, periodic security assessments insufficient. Modern cloud infrastructure changes continuously as teams deploy new workloads, APIs, and services across multi-cloud and hybrid environments. Each change can introduce new security vulnerabilities, misconfigurations, or exposed attack paths that attackers can exploit within minutes.

Several trends are driving the increased importance of cloud vulnerability management in 2026:

  • Accelerated cloud adoption: Organizations continue to move critical workloads and sensitive data into IaaS, PaaS, and SaaS environments, significantly expanding the attack surface.
  • Misconfigurations remain the leading risk: Over-permissive access policies, exposed storage services, and insecure APIs are still the most common causes of cloud breaches.
  • Shorter attacker dwell time: Threat actors now exploit newly exposed vulnerabilities within hours, not weeks, making continuous vulnerability scanning essential.
  • Increased regulatory pressure: Compliance frameworks such as GDPR, HIPAA, SOC 2, and emerging AI and data regulations require continuous risk assessment and documentation.
  • Data-centric breach impact: Cloud breaches increasingly focus on accessing sensitive data rather than infrastructure alone, raising the stakes of unresolved vulnerabilities.

In this environment, cloud vulnerability management best practices, including continuous scanning, risk-based prioritization, and automated remediation - are no longer optional. They are a foundational requirement for maintaining cloud security, protecting sensitive data, and meeting compliance obligations in 2026.

Common Vulnerabilities in Cloud Security

Before diving into the details of cloud vulnerability management, it's essential to understand the types of vulnerabilities that can affect your cloud environment. Here are some common vulnerabilities that private cloud security experts encounter:

Vulnerable APIs

Application Programming Interfaces (APIs) are the backbone of many cloud services. They allow applications to communicate and interact with the cloud infrastructure. However, if not adequately secured, APIs can be an entry point for cyberattacks. Insecure API endpoints, insufficient authentication, and improper data handling can all lead to vulnerabilities.


# Insecure API endpoint example
import requests

response = requests.get('https://example.com/api/v1/insecure-endpoint')
if response.status_code == 200:
    # Handle the response
else:
    # Report an error

Misconfigurations

Misconfigurations are one of the leading causes of security breaches in the cloud. These can range from overly permissive access control policies to improperly configured firewall rules. Misconfigurations may leave your data exposed or allow unauthorized access to resources.


# Misconfigured firewall rule
- name: allow-http
  sourceRanges:
    - 0.0.0.0/0 # Open to the world
  allowed:
    - IPProtocol: TCP
      ports:
        - '80'

Data Theft or Loss

Data breaches can result from poor data handling practices, encryption failures, or a lack of proper data access controls. Stolen or compromised data can lead to severe consequences, including financial losses and damage to an organization's reputation.


// Insecure data handling example
import java.io.File;
import java.io.FileReader;

public class InsecureDataHandler {
    public String readSensitiveData() {
        try {
            File file = new File("sensitive-data.txt");
            FileReader reader = new FileReader(file);
            // Read the sensitive data
            reader.close();
        } catch (Exception e) {
            // Handle errors
        }
    }
}

Poor Access Management

Inadequate access controls can lead to unauthorized users gaining access to your cloud resources. This vulnerability can result from over-privileged user accounts, ineffective role-based access control (RBAC), or lack of multi-factor authentication (MFA).


# Overprivileged user account
- members:
    - user:johndoe@example.com
  role: roles/editor

Non-Compliance

Non-compliance with regulatory standards and industry best practices can lead to vulnerabilities. Failing to meet specific security requirements can result in fines, legal actions, and a damaged reputation.


Non-compliance with GDPR regulations can lead to severe financial penalties and legal consequences.

Understanding these vulnerabilities is crucial for effective cloud vulnerability management. Once you can recognize these weaknesses, you can take steps to mitigate them.

Cloud Vulnerability Assessment and Mitigation

Now that you're familiar with common cloud vulnerabilities, it's essential to know how to mitigate them effectively. Mitigation involves a combination of proactive measures to reduce the risk and the potential impact of security issues.

Here are some steps to consider:

  • Regular Cloud Vulnerability Scanning: Implement a robust vulnerability scanning process that identifies and assesses vulnerabilities within your cloud environment. Use automated tools that can detect misconfigurations, outdated software, and other potential weaknesses.
  • Access Control: Implement strong access controls to ensure that only authorized users have access to your cloud resources. Enforce the principle of least privilege, providing users with the minimum level of access necessary to perform their tasks.
  • Configuration Management: Regularly review and update your cloud configurations to ensure they align with security best practices. Tools like Infrastructure as Code (IaC) and Configuration Management Databases (CMDBs) can help maintain consistency and security.
  • Patch Management: Keep your cloud infrastructure up to date by applying patches and updates promptly. Vulnerabilities in the underlying infrastructure can be exploited by attackers, so staying current is crucial.
  • Encryption: Use encryption to protect data both at rest and in transit. Ensure that sensitive information is adequately encrypted, and use strong encryption protocols and algorithms.
  • Monitoring and Incident Response: Implement comprehensive monitoring and incident response capabilities to detect and respond to security incidents in real time. Early detection can minimize the impact of a breach.
  • Security Awareness Training: Train your team on security best practices and educate them about potential risks and how to identify and report security incidents.

Key Features of Cloud Vulnerability Management

Effective cloud vulnerability management provides several key benefits that are essential for securing your cloud environment. Let's explore these features in more detail:

Better Security

Cloud vulnerability management ensures that your cloud environment is continuously monitored for vulnerabilities. By identifying and addressing these weaknesses, you reduce the attack surface and lower the risk of data breaches or other security incidents. This proactive approach to security is essential in an ever-evolving threat landscape.


# Code snippet for vulnerability scanning
import security_scanner

# Initialize the scanner
scanner = security_scanner.Scanner()

# Run a vulnerability scan
scan_results = scanner.scan_cloud_resources()

Cost-Effective

By preventing security incidents and data breaches, cloud vulnerability management helps you avoid potentially significant financial losses and reputational damage. The cost of implementing a vulnerability management system is often far less than the potential costs associated with a security breach.


# Code snippet for cost analysis
def calculate_potential_cost_of_breach():
    # Estimate the cost of a data breach
    return potential_cost

potential_cost = calculate_potential_cost_of_breach()
if potential_cost > cost_of vulnerability management:
    print("Investing in vulnerability management is cost-effective.")
else:
    print("The cost of vulnerability management is justified by potential savings.")

Highly Preventative

Vulnerability management is a proactive and preventive security measure. By addressing vulnerabilities before they can be exploited, you reduce the likelihood of a security incident occurring. This preventative approach is far more effective than reactive measures.


# Code snippet for proactive security
import preventive_security_module

# Enable proactive security measures
preventive_security_module.enable_proactive_measures()

Time-Saving

Cloud vulnerability management automates many aspects of the security process. This automation reduces the time required for routine security tasks, such as vulnerability scanning and reporting. As a result, your security team can focus on more strategic and complex security challenges.


# Code snippet for automated vulnerability scanning
import automated_vulnerability_scanner

# Configure automated scanning schedule
automated_vulnerability_scanner.schedule_daily_scan()

Steps in Implementing Cloud Vulnerability Management

Implementing cloud vulnerability management is a systematic process that involves several key steps. Let's break down these steps for a better understanding:

Identification of Issues

The first step in implementing cloud vulnerability management is identifying potential vulnerabilities within your cloud environment. This involves conducting regular vulnerability scans to discover security weaknesses.


# Code snippet for identifying vulnerabilities
import vulnerability_identifier

# Run a vulnerability scan to identify issues
vulnerabilities = vulnerability_identifier.scan_cloud_resources()

Risk Assessment

After identifying vulnerabilities, you need to assess their risk. Not all vulnerabilities are equally critical. Risk assessment helps prioritize which vulnerabilities to address first based on their potential impact and likelihood of exploitation.


# Code snippet for risk assessment
import risk_assessment

# Assess the risk of identified vulnerabilities
priority_vulnerabilities = risk_assessment.assess_risk(vulnerabilities)

Vulnerabilities Remediation

Remediation involves taking action to fix or mitigate the identified vulnerabilities. This step may include applying patches, reconfiguring cloud resources, or implementing access controls to reduce the attack surface.


# Code snippet for vulnerabilities remediation
import remediation_tool

# Remediate identified vulnerabilities
remediation_tool.remediate_vulnerabilities(priority_vulnerabilities)

Vulnerability Assessment Report

Documenting the entire vulnerability management process is crucial for compliance and transparency. Create a vulnerability assessment report that details the findings, risk assessments, and remediation efforts.


# Code snippet for generating a vulnerability assessment report
import report_generator

# Generate a vulnerability assessment report
report_generator.generate_report(priority_vulnerabilities)

Re-Scanning

The final step is to re-scan your cloud environment periodically. New vulnerabilities may emerge, and existing vulnerabilities may reappear. Regular re-scanning ensures that your cloud environment remains secure over time.


# Code snippet for periodic re-scanning
import re_scanner

# Schedule regular re-scans of your cloud resources
re_scanner.schedule_periodic_rescans()

By following these steps, you establish a robust cloud vulnerability management program that helps secure your cloud environment effectively.

Challenges with Cloud Vulnerability Management

While cloud vulnerability management offers many advantages, it also comes with its own set of challenges. Some of the common challenges include:

Challenge Description
Scalability As your cloud environment grows, managing and monitoring vulnerabilities across all resources can become challenging.
Complexity Cloud environments can be complex, with numerous interconnected services and resources. Understanding the intricacies of these environments is essential for effective vulnerability management.
Patch Management Keeping cloud resources up to date with the latest security patches can be a time-consuming task, especially in a dynamic cloud environment.
Compliance Ensuring compliance with industry standards and regulations can be challenging, as cloud environments often require tailored configurations to meet specific compliance requirements.
Alert Fatigue With a constant stream of alerts and notifications from vulnerability scanning tools, security teams can experience alert fatigue, potentially missing critical security issues.

Cloud Vulnerability Management Best Practices

To overcome the challenges and maximize the benefits of cloud vulnerability management, consider these best practices:

  • Automation: Implement automated vulnerability scanning and remediation processes to save time and reduce the risk of human error.
  • Regular Training: Keep your security team well-trained and updated on the latest cloud security best practices.
  • Scalability: Choose a vulnerability management solution that can scale with your cloud environment.
  • Prioritization: Use risk assessments to prioritize the remediation of vulnerabilities effectively.
  • Documentation: Maintain thorough records of your vulnerability management efforts, including assessment reports and remediation actions.
  • Collaboration: Foster collaboration between your security team and cloud administrators to ensure effective vulnerability management.
  • Compliance Check: Regularly verify your cloud environment's compliance with relevant standards and regulations.

Tools to Help Manage Cloud Vulnerabilities

To assist you in your cloud vulnerability management efforts, there are several tools available. These tools offer features for vulnerability scanning, risk assessment, and remediation.

Here are some popular options:

1. Sentra: Sentra is a cloud-based data security platform that provides visibility, assessment, and remediation for data security. It can be used to discover and classify sensitive data, analyze data security controls, and automate alerts in cloud data stores, IaaS, PaaS, and production environments.

2. Tenable Nessus: A widely-used vulnerability scanner that provides comprehensive vulnerability assessment and prioritization.

3. Qualys Vulnerability Management: Offers vulnerability scanning, risk assessment, and compliance management for cloud environments.

4. AWS Config: Amazon Web Services (AWS) provides AWS Config, as well as other AWS cloud security tools, to help you assess, audit, and evaluate the configurations of your AWS resources.

5. Azure Security Center: Microsoft Azure's Security Center offers Azure Security tools for continuous monitoring, threat detection, and vulnerability assessment.

6. Google Cloud Security Scanner: A tool specifically designed for Google Cloud Platform that scans your applications for vulnerabilities.

7. OpenVAS: An open-source vulnerability scanner that can be used to assess the security of your cloud infrastructure.

Choosing the right tool depends on your specific cloud environment, needs, and budget. Be sure to evaluate the features and capabilities of each tool to find the one that best fits your requirements.

Conclusion

In an era of increasing cyber threats and data breaches, cloud vulnerability management is a vital practice to secure your cloud environment. By understanding common cloud vulnerabilities, implementing effective mitigation strategies, and following best practices, you can significantly reduce the risk of security incidents. Embracing automation and utilizing the right tools can streamline the vulnerability management process, making it a manageable and cost-effective endeavor.

Remember that security is an ongoing effort, and regular vulnerability scanning, risk assessment, and remediation are crucial for maintaining the integrity and safety of your cloud infrastructure. With a robust cloud vulnerability management program in place, you can confidently leverage the benefits of the cloud while keeping your data and assets secure.

See how Sentra identifies cloud vulnerabilities that put sensitive data at risk.

<blogcta-big>

Read More
Nikki Ralston
Nikki Ralston
David Stuart
David Stuart
December 23, 2025
3
Min Read

Securing Sensitive Data in Google Cloud: Sentra Data Security for Modern Cloud and AI Environments

Securing Sensitive Data in Google Cloud: Sentra Data Security for Modern Cloud and AI Environments

As organizations scale their use of Google Cloud, sensitive data is rapidly expanding across cloud storage, data lakes, and analytics platforms, often without clear visibility or consistent control. Native cloud security tools focus on infrastructure and configuration risk, but they do not provide a reliable understanding of what sensitive data actually exists inside cloud environments, or how that data is being accessed and used.

Sentra secures Google Cloud by delivering deep, AI-driven data discovery and classification across cloud-native services, unstructured data stores, and shared environments. With continuous visibility into where sensitive data resides and how exposure evolves over time, security teams can accurately assess real risk, enforce data governance, and reduce the likelihood of data leaks, without slowing cloud adoption.

As data extends into Google Workspace and powers Gemini AI, Sentra ensures sensitive information remains governed and protected across collaboration and AI workflows. When integrated with Cloud Security Posture Management (CSPM) solutions, Sentra enriches cloud posture findings with trusted data context, transforming cloud security signals into prioritized, actionable insight based on actual data exposure.

The Challenge:
Cloud, Collaboration, and AI Without Data Context

Modern enterprises face three converging challenges:

  • Massive data sprawl across cloud infrastructure, SaaS collaboration tools, and data lakes
  • Unstructured data dominance, representing ~80% of enterprise data and the hardest to classify
  • AI systems like Gemini that ingest, transform, and generate sensitive data at scale

While CSPMs, like Wiz, excel at identifying misconfigurations, attack paths, and identity risk, they cannot determine what sensitive data actually exists inside exposed resources. Lightweight or native DSPM signals lack the accuracy and depth required to support confident risk decisions.

Security teams need more than posture - they need data truth.

Data Security Built for the Google Ecosystem

Sentra secures sensitive data across Google Cloud, Google Workspace, and AI-driven environments with accuracy, scale, and control -going beyond visibility to actively reduce data risk.

Key Sentra Capabilities

  • AI-Driven Data Discovery & Classification
    Precisely identifies PII, PCI, credentials, secrets, IP, and regulated data across structured and unstructured sources—so teams can trust the results.
  • Best-in-Class Unstructured Data Coverage
    Accurately classifies long-form documents and free text, addressing the largest source of enterprise data risk.
  • Petabyte-Scale, High-Performance Scanning
    Fast, efficient scanning designed for cloud and data lake scale without operational disruption.
  • Unified, Agentless Coverage
    Consistent visibility and classification across Google Cloud, Google Workspace, data lakes, SaaS, and on-prem.
  • Enabling Intelligent Data Loss Prevention (DLP)
    Data-aware controls prevent oversharing, public exposure, and misuse—including in AI workflows—driven by accurate classification, not static rules.
  • Continuous Risk Visibility
    Tracks where sensitive data lives and how exposure changes over time, enabling proactive governance and faster response.

Strengthening Security Across Google Cloud & Workspace

Google Cloud

Sentra enhances Google Cloud security by:

  • Discovering and classifying sensitive data in GCS, BigQuery, and data lakes
  • Identifying overexposed and publicly accessible sensitive data
  • Detecting toxic combinations of sensitive data and risky configurations
  • Enabling policy-driven governance aligned to compliance and risk tolerance

Google Workspace

Sentra secures the largest source of unstructured data by:

  • Classifying sensitive content in Docs, Sheets, Drive, and shared files
  • Detecting oversharing and external exposure
  • Identifying shadow data created through collaboration
  • Supporting audit and compliance with clear reporting

Enabling Secure and Responsible Gemini AI

Gemini AI introduces a new class of data risk. Sensitive information is no longer static, it is continuously ingested and generated by AI systems.

Sentra enables secure and responsible AI adoption by:

  • Providing visibility into what sensitive data feeds AI workflows
  • Preventing regulated or confidential data from entering AI systems
  • Supporting governance policies for responsible AI use
  • Reducing the risk of AI-driven data leakage

Wiz + Sentra: Comprehensive Cloud and Data Security

Wiz identifies where cloud risk exists.
Sentra determines what data is actually at risk.

Together, Sentra + Wiz Deliver:

  • Enrichment of Wiz findings with accurate, context-rich data classification
  • Detection of real exposure, not just theoretical misconfiguration
  • Better alert prioritization based on business impact
  • Clear, defensible risk reporting for executives and boards

Security teams add Sentra because Wiz alone is not enough to accurately assess data risk at scale, especially for unstructured and AI-driven data.

Business Outcomes

With Sentra securing data across Google Cloud, Google Workspace, and Gemini AI—and enhancing Wiz—organizations achieve:

  • Reduced enterprise risk through data-driven prioritization
  • Improved compliance readiness beyond minimum regulatory requirements
  • Higher SOC efficiency with less noise and faster response
  • Confident AI adoption with enforceable governance
  • Clearer executive and board-level risk visibility

“Wiz shows us cloud risk. Sentra shows us whether that risk actually impacts sensitive data. Together, they give us confidence to move fast with Google and Gemini without losing control.”
— CISO, Enterprise Organization

As cloud, collaboration, and AI converge, security leaders must go beyond infrastructure-only security. Sentra provides the data intelligence layer that makes Google Cloud security stronger, Google Workspace safer, Gemini AI responsible, and Wiz actionable.

Sentra helps organizations secure what matters most, their critical data.

Read More
Dean Taler
Dean Taler
September 16, 2025
5
Min Read
Compliance

How to Write an Effective Data Security Policy

How to Write an Effective Data Security Policy

Introduction: Why Writing Good Policies Matters

In modern cloud and AI-driven environments, having security policies in place is no longer enough. The quality of those policies directly shapes your ability to prevent data exposure, reduce noise, and drive meaningful response. A well-written policy helps to enforce real control and provides clarity in how to act. A poorly written one, on the other hand, fuels alert fatigue, confusion, or worse - blind spots.

This article explores how to write effective, low-noise, action-oriented security policies that align with how data is actually used.

What Is a Data Security Policy?

A data security policy is a set of rules that defines how your organization handles sensitive data. It specifies who can access what information, under what conditions, and what happens when those rules are violated. But here's the key difference: a good data security policy isn't just a document that sits in a compliance folder. It's an active control that detects risky behavior and triggers specific responses. While many organizations write policies that sound impressive but create endless alerts, effective policies target real risks and drive meaningful action. The goal isn't to monitor everything, it's to catch the activities that actually matter and respond quickly when they happen.

What Makes a Data Security Policy “Good”?

Before you begin drafting, ask yourself: what problem is this policy solving, and why does it matter? 

A good data security policy isn’t just a technical rule sitting in a console, it’s a sensor for meaningful risk. It should define what activity you want to detect, under what conditions it should trigger, and who or what is in scope, so that it avoids firing on safe, expected scenarios.

Key characteristics of an effective policy:

  • Clear intent: protects against a well-defined risk, not a vague category of threats.
  • Actionable outcome: leads to a specific, repeatable response.
  • Low noise: triggers only on unusual or risky patterns, not normal operations.
  • Context-aware: accounts for business processes and expected data use.

💡 Tip: If you can’t explain in one sentence what you want to detect and what action should happen when it triggers, your policy isn’t ready for production.

Turning Risk Into Actionable Policy

Data security policies should always be grounded in real business risk, not just what’s technically possible to monitor. A strong policy targets scenarios that could genuinely harm the organization if left unchecked.

Questions to ask before creating a policy:

  • What specific behavior poses a risk to our sensitive or regulated data?
  • Who might trigger it, and why? Is it more likely to be malicious, accidental, or operational?
  • What exceptions or edge cases should be allowed without generating noise?
  • What systems will enforce it and who owns the response when it fires?

Instead of vague statements like “No access to PII”, write with precision:


“Block and alert on external sharing of customer PII from corporate cloud storage to any domain not on the approved partner list, unless pre-approved via the security exception process.”

Recommendations:

  • Treat policies like code - start them in monitor-only mode.
  • Test both sides: validate true positives (catching risky activity) and avoid false positives (triggering on normal behavior).

💡 Tip: The best policies are precise enough to detect real risks, but tested enough to avoid drowning teams in noise.

A Good Data Security Policy Should Drive Action

Policies are only valuable if they lead to a decision or action. Without a clear owner or remediation process, alerts quickly become noise. Every policy should generate an alert that leads to accountability.

Questions to ask:

  • Who owns the alert?
  • What should happen when it fires?
  • How quickly should it be resolved?

💡 Tip: If no one is responsible for acting on a policy’s alerts, it’s not a policy — it’s background noise.

Don’t Ignore the Noise

When too many alerts fire, it’s tempting to dismiss them as an annoyance. But noisy policies are often a signal, not a mistake. Sometimes policies are too broad or poorly scoped. Other times, they point to deeper systemic risks, such as overly open sharing practices or misconfigured controls.

Recommendations:

  • Investigate noisy policies before silencing them.
  • Treat excess alerts as a clue to systemic risk.

💡 Tip: A noisy policy may be exposing the exact weakness you most need to fix.

Know When to Adjust or Retire a Policy

Policies must evolve as your organization, tools, and data change. A rule that made sense last year might be irrelevant or counterproductive today.

Recommendations:

  • Continuously align policies with evolving risks.
  • Track key metrics: how often it triggers, severity, and response actions.
  • Optimize response paths so alerts reach the right owners quickly.
  • Schedule quarterly or biannual reviews with both security and business stakeholders.

💡 Tip: The only thing worse than no policy is a stale one that everyone ignores.

Why Smart Policies Matter for Regulated Data

Data security policies aren’t just an internal safeguard, they are how compliance is enforced in practice. Regulations like GDPR, HIPAA, and PCI DSS require demonstrable control over sensitive data.

Poorly written policies generate alert fatigue, making it harder to detect real violations. Well-crafted ones reduce the risk of noncompliance, streamline audits, and improve breach response.

Recommendations:

  • Map each policy directly to a specific regulatory requirement.
  • Retire rules that create noise without reducing actual risk.

💡 Tip: If a policy doesn’t map to a regulation or a real risk, it’s adding effort without adding value.

Making Policy Creation Simple, Powerful, and Built for Results 

An effective solution for policy creation should make it easy to get started, provide the flexibility to adapt to your unique environment, and give you the deep data context you need to make policies that actually work. It should streamline the process so you can move quickly without sacrificing control, compliance, or clarity.

Sentra is that solution. By combining intuitive policy building with deep data context, Sentra simplifies and strengthens the entire lifecycle of policy creation.

With Sentra, you can:

  • Start fast with out-of-the-box, low-noise controls.
  • Create custom policies without complexity.
  • Leverage real-time knowledge of where sensitive data lives and who has access to it.
  • Continuously tune for low noise with performance metrics.
  • Understand which regulations you can adhere to

💡 Tip: The true value of a policy isn’t how often it triggers, it’s whether it consistently drives the right response.

Good Policies Start with Good Visibility

The best data security policies are written by teams who know exactly where sensitive data lives, how it moves, who can access it, and what creates risk. Without that visibility, policy writing becomes guesswork. With it, enforcement becomes simple, effective, and sustainable.

At Sentra, we believe policy creation should be driven by real data, not assumptions. If you’re ready to move from reactive alerts to meaningful control.

<blogcta-big>

Read More
Expert Data Security Insights Straight to Your Inbox
What Should I Do Now:
1

Get the latest GigaOm DSPM Radar report - see why Sentra was named a Leader and Fast Mover in data security. Download now and stay ahead on securing sensitive data.

2

Sign up for a demo and learn how Sentra’s data security platform can uncover hidden risks, simplify compliance, and safeguard your sensitive data.

3

Follow us on LinkedIn, X (Twitter), and YouTube for actionable expert insights on how to strengthen your data security, build a successful DSPM program, and more!