All Resources
In this article:
minus iconplus icon
Share the Blog

AI & Data Privacy: Challenges and Tips for Security Leaders

June 26, 2024
3
 Min Read
Data Security

Balancing Trust and Unpredictability in AI

AI systems represent a transformative advancement in technology, promising innovative progress across various industries. Yet, their inherent unpredictability introduces significant concerns, particularly regarding data security and privacy. Developers face substantial challenges in ensuring the integrity and reliability of AI models amidst this unpredictability.

This uncertainty complicates matters for buyers, who rely on trust when investing in AI products. Establishing and maintaining trust in AI necessitates rigorous testing, continuous monitoring, and transparent communication regarding potential risks and limitations. Developers must implement robust safeguards, while buyers benefit from being informed about these measures to mitigate risks effectively.

AI and Data Privacy

Data privacy is a critical component of AI security. As AI systems often rely on vast amounts of personal data to function effectively, ensuring the privacy and security of this data is paramount. Breaches of data privacy can lead to severe consequences, including identity theft, financial loss, and erosion of trust in AI technologies. Developers must implement stringent data protection measures, such as encryption, anonymization, and secure data storage, to safeguard user information.

The Role of Data Privacy Regulations in AI Development

Data privacy regulations are playing an increasingly significant role in the development and deployment of AI technologies. As AI continues to advance globally, regulatory frameworks are being established to ensure the ethical and responsible use of these powerful tools.

  • Europe:

The European Parliament has approved the AI Act, a comprehensive regulatory framework designed to govern AI technologies. This Act is set to be completed by June and will become fully applicable 24 months after its entry into force, with some provisions becoming effective even sooner. The AI Act aims to balance innovation with stringent safeguards to protect privacy and prevent misuse of AI.

  • California:

In the United States, California is at the forefront of AI regulation. A bill concerning AI and its training processes has progressed through legislative stages, having been read for the second time and now ordered for a third reading. This bill represents a proactive approach to regulating AI within the state, reflecting California's leadership in technology and data privacy.

  • Self-Regulation:

In addition to government-led initiatives, there are self-regulation frameworks available for companies that wish to proactively manage their AI operations. The National Institute of Standards and Technology (NIST) AI Risk Management Framework (RMF) and the ISO/IEC 42001 standard provide guidelines for developing trustworthy AI systems. Companies that adopt these standards not only enhance their operational integrity but also position themselves to better align with future regulatory requirements.

  • NIST Model for a Trustworthy AI System:

The NIST model outlines key principles for developing AI systems that are ethical, accountable, and transparent. This framework emphasizes the importance of ensuring that AI technologies are reliable, secure, and unbiased. By adhering to these guidelines, organizations can build AI systems that earn public trust and comply with emerging regulatory standards.Understanding and adhering to these regulations and frameworks is crucial for any organization involved in AI development. Not only do they help in safeguarding privacy and promoting ethical practices, but they also prepare organizations to navigate the evolving landscape of AI governance effectively.

How to Build Secure AI Products

Ensuring the integrity of AI products is crucial for protecting users from potential harm caused by errors, biases, or unintended consequences of AI decisions. Safe AI products foster trust among users, which is essential for the widespread adoption and positive impact of AI technologies.

These technologies have an increasing effect on various aspects of our lives, from healthcare and finance to transportation and personal devices, making it such a critical topic to focus on. 

How can developers build secure AI products?

  1. Remove sensitive data from training data (pre-training): Addressing this task is challenging, due to the vast amounts of data involved in AI-training, and the lack of automated methods to detect all types of  sensitive data.
  2. Test the model for privacy compliance (pre-production): Like any software, both manual tests and automated tests are done before production. But, how can users guarantee that sensitive data isn’t exposed during testing? Developers must explore innovative approaches to automate this process and ensure continuous monitoring of privacy compliance throughout the development lifecycle.
  3. Implement proactive monitoring in production: Even with thorough pre-production testing, no model can guarantee complete immunity from privacy violations in real-world scenarios. Continuous monitoring during production is essential to promptly detect and address any unexpected privacy breaches. Leveraging advanced anomaly detection techniques and real-time monitoring systems can help developers identify and mitigate potential risks promptly.

Secure LLMs Across the Entire Development Pipeline With Sentra

Gain Comprehensive Visibility and Secure Training Data (Sentra’s DSPM)

  • Automatically discover and classify sensitive information within your training datasets.
  • Protect against unauthorized access with robust security measures.
  • Continuously monitor your security posture to identify and remediate vulnerabilities.

Monitor Models in Real Time (Sentra’s DDR)

  • Detect potential leaks of sensitive data by continuously monitoring model activity logs.
  • Proactively identify threats such as data poisoning and model theft.
  • Seamlessly integrate with your existing CI/CD and production systems for effortless deployment.

Finally, Sentra helps you effortlessly comply with industry regulations like NIST AI RMF and ISO/IEC 42001, preparing you for future governance requirements. This comprehensive approach minimizes risks and empowers developers to confidently state:

"This model was thoroughly tested for privacy safety using Sentra," fostering trust in your AI initiatives.

As AI continues to redefine industries, prioritizing data privacy is essential for responsible AI development. Implementing stringent data protection measures, adhering to evolving regulatory frameworks, and maintaining proactive monitoring throughout the AI lifecycle are crucial. 

By prioritizing strong privacy measures from the start, developers not only build trust in AI technologies but also maintain ethical standards essential for long-term use and societal approval.

<blogcta-big>

Discover Ron’s expertise, shaped by over 20 years of hands-on tech and leadership experience in cybersecurity, cloud, big data, and machine learning. As a serial entrepreneur and seed investor, Ron has contributed to the success of several startups, including Axonius, Firefly, Guardio, Talon Cyber Security, and Lightricks, after founding a company acquired by Oracle.

Subscribe

Latest Blog Posts

Nikki Ralston
Nikki Ralston
David Stuart
David Stuart
July 13, 2025
4
Min Read
Data Security

Securing the Cloud: Advanced Strategies for Continuous Data Monitoring

Securing the Cloud: Advanced Strategies for Continuous Data Monitoring

In today's digital world, data security in the cloud is essential. You rely on popular observability tools to track availability, performance, and usage—tools that keep your systems running smoothly. However, as your data flows continuously between systems and regions, you need a layer of security that delivers granular insights without disrupting performance.

 

Cloud service platforms provide the agility and efficiency you expect; however, they often lack the ability to monitor real-time data movement, access, and risk across diverse environments. 

This blog post explains how cloud data monitoring strategies protect your data while addressing issues like data sprawl, data proliferation, and unstructured data challenges. Along the way, we will share practical information to help you deepen your understanding and strengthen your overall security posture.

Why Real-Time Cloud Monitoring Matters

In the cloud, data does not remain static. It shifts between environments, services, and geographical locations. As you manage these flows, a critical question arises: "Where is my sensitive cloud data stored?" 

Knowing the exact location of your data in real-time is crucial for mitigating unauthorized access, preventing compliance issues, and effectively addressing data sprawl and proliferation. 

Risk of Data Misplacement: When Data Is Stored Outside Approved Environments

Misplaced data refers to information stored outside its approved environment. This can occur when data is in unauthorized or unverified cloud instances or shadow IT systems. Such misplacement heightens security risks and complicates compliance efforts.

 

A simple table can clarify the differences in risk levels and possible mitigation strategies for various data storage environments:

Data Location Approved Environment Risk Level Example Mitigation Strategy
Authorized Cloud Yes Low Regular Audits
Shadow IT Systems No High Immediate remediation
Unsecured File Shares No Medium Enhanced access controls

Risk of Insufficient Monitoring: Gaps in Real-Time Visibility of Rapid Data Movements

The high velocity of data flows in vast cloud environments makes tracking data challenging, and traditional monitoring methods may fall short. 

The rapid data movement means that data proliferation often outstrips traditional monitoring efforts. Meanwhile, the sheer volume, variety, and velocity of data require risk analysis tools that are built for scale. 

Legacy systems typically struggle with these issues, making it difficult for you to maintain up-to-date oversight and achieve a comprehensive security posture. Explore Sentra's blog on data movement risks for additional details.

Limitations of Legacy Data Security Solutions

When evaluating how to manage and monitor cloud data, it’s clear that traditional security tools fall short in today’s complex, cloud-native environments.

Older security solutions (built for the on-prem era!) were designed for static environments, while today's dynamic cloud demands modern, more scalable approaches. Legacy data classification methods, as discussed in this Sentra analysis, also fail to manage unstructured data effectively.

Let’s take a deeper look at their limitations:

  • Inadequate data classification: Traditional data classification often relies on manual processes that fail to keep pace with real-time cloud operations. Manual classification is inefficient and prone to error, making it challenging to quickly identify and secure sensitive information.
    • Such outdated methods particularly struggle with unstructured data management, leaving gaps in visibility.
  • Scalability issues: As your enterprise grows and embraces the cloud, the volume of data you must handle also grows exponentially. When this happens, legacy systems cannot keep up. They lag behind and are slow to respond to potential risks, exposing your company to possible security breaches.
    • Modern requirements for cloud data management and monitoring call for solutions that scale with your business.
  • High operational costs: Maintaining outdated security tools can be expensive. Legacy systems often incur high operational costs due to manual oversight, taxing cloud compute consumption, and inefficient processes. 
    • These costs can escalate quickly, especially compared to cloud-native solutions offering automation, efficiency, and streamlined management.

To address these risks, it's essential to have a strategy that shows you how to monitor data as it moves, ensuring that sensitive files never end up in unapproved environments.

Best Practices for Cloud Data Monitoring and Protection

In an era of rapidly evolving cloud environments, implementing a cohesive cloud data monitoring strategy that integrates actionable recommendations is essential. This approach combines automated data discovery, real-time monitoring, robust access governance, and continuous compliance validation to secure sensitive cloud data and address emerging threats effectively.

Automated Data Discovery and Classification

Implementing an agentless, cloud-native solution enables you to continuously discover and classify sensitive data without any performance drawbacks. Automation significantly reduces manual errors and delivers real-time insights for robust and efficient data monitoring.

Benefits include:

  • Continuous data discovery and classification
  • Fewer manual interventions
  • Real-time risk assessment
  • Lower operational costs through automation
  • Simplified deployment and ongoing maintenance
  • Rapid response to emerging risks with minimal disruption

By adopting a cloud-native data security platform, you gain deeper visibility into your sensitive data without adding system overhead.

Real-Time Data Movement Monitoring

To prevent breaches, real-time cloud monitoring is critical. Receiving real-time alerts will empower you to take action quickly and mitigate threats in the event of unauthorized transfers or suspicious activities. 

A well-designed monitoring dashboard can visually display data flows, alert statuses, and remediation actions—all of which provide clear, actionable insights. Alerts can also flow directly to remediation platforms such as ITSM or SOAR systems.

In addition to real-time dashboards, implement automated alerting workflows that integrate with your existing incident response tools. This ensures immediate visibility when anomalies occur for a swift and coordinated response. Continuous monitoring highlights any unusual data movement, helping security teams stay ahead of threats in an environment where data volumes and velocities are constantly expanding.

Robust Access Governance

Only authorized parties should be able to access and utilize sensitive data. Maintain strict oversight by enforcing least privilege access and performing regular reviews. This not only safeguards data but also helps you adhere to the compliance requirements of any relevant regulatory standards.

 

A checklist for robust governance might include:

  • Implementation of role-based and attribute-based access control
  • Periodic access audits
  • Integration with identity management systems

Ensuring Compliance and Data Privacy

Adhering to data privacy regulations that apply to your sector or location is a must. Continuous monitoring and proactive validation will help you identify and address compliance gaps before your organization is hit with a security breach or legal violation. Sentra offers actionable steps related to various regulations to solidify your compliance posture.

Integrating automated compliance checks into your security processes helps you meet regulatory requirements. To learn more about scaling your security infrastructure, refer to Sentra’s guide to achieving exabyte-scale enterprise data security.

Beyond tools and processes, cultivating a security-minded culture is critical. Conduct regular training sessions and simulated breach exercises so that everyone understands how to handle sensitive data responsibly. Encouraging active participation and accountability across the organization solidifies your security posture, bridging the gap between technical controls and human vigilance.

Sentra Addresses Cloud Data Monitoring Challenges

Sentra's platform complements your current observability tools, enhancing them with robust data security capabilities. Let’s explore how Sentra addresses common challenges in cloud data monitoring.

Exabyte-Scale Mastery: Navigating Expansive Data Ecosystems

Sentra’s platform is designed to handle enormous data volumes with ease. Its distributed architecture and elastic scaling provide comprehensive oversight and ensure high performance as data proliferation intensifies. The platform's distributed architecture and elastic scaling capabilities guarantee high performance, regardless of data volume.

Key features:

  • Distributed architecture for high-volume data
  • Elastic scaling for dynamic cloud environments
  • Integration with primary cloud services

Seamless Automation: Transforming Manual Workflows into Continuous Security

By automating data discovery, classification, and monitoring, Sentra eliminates the need for extensive manual intervention. This streamlined approach provides uninterrupted protection and rapid threat response. 

Automation is essential for addressing the challenges of data sprawl without compromising system performance.

Deep Insights & Intelligent Validation: Harnessing Context for Proactive Risk Detection

Sentra distinguishes itself by providing deep contextual analysis of your data. Its intelligent validation process efficiently detects anomalies and prioritizes risks, enabling precise and proactive remediation. 

This capability directly addresses the primary concern of achieving continuous, real-time monitoring and ensuring precise, efficient data protection.

Unified Security: Integrating with your Existing Systems for Enhanced Protection

One of the most significant advantages of Sentra's platform is its seamless integration with your current SIEM and SOAR tools. This unified approach allows you to maintain excellent observability with your trusted systems while benefiting from enhanced security measures without any operational disruption.

Conclusion

Effective cloud data monitoring is achieved by blending the strengths of your trusted observability tools with advanced security measures. By automating data discovery and classification, establishing real-time monitoring, and enforcing robust access governance, you can safeguard your data against emerging threats. 

Elevate your operations with an extra layer of automated, cloud-native security that tackles data sprawl, proliferation, and compliance challenges. After carefully reviewing your current security and identifying any gaps, invest in modern tools that provide visibility, protection, and resilience.

Maintaining cloud security is a continuous task that demands vigilance, innovation, and proactive decision-making. Integrating solutions like Sentra's platform into your security framework will offer robust, scalable protection that evolves with your business needs. The future of your data security is in your hands, so take decisive steps to build a safer, more secure cloud environment.

<blogcta-big>

Read More
Asaf Kochan
Asaf Kochan
July 9, 2025
3
Min Read
Data Security

Data Security in 2025: Why DSPM Is Now a Business Imperative

Data Security in 2025: Why DSPM Is Now a Business Imperative

At RSAC 2025, I had the opportunity to speak with Adrian Sanabria about one of the most pressing and complex challenges facing security teams today: data security. Since then, the urgency around the future of data security has only intensified.

We're watching a major inflection point unfold across industries. Organizations are generating and storing more data than ever, while simultaneously adopting AI at a pace that outstrips most security programs. At the same time, regulators are enforcing data privacy with increasing sharpness. These trends all converge on one critical question:

 

Do you know where your sensitive data is - and who can access it?

If the answer is no, then it's time to rethink your approach.

Data is Now The Most Valuable, And Volatile Asset

For years, security tools have operated largely without visibility into the data itself. We've focused on endpoints, perimeters, and identities - all essential layers. But in 2025, that’s no longer sufficient.

Data is now the most valuable, and volatile asset most companies have. We’re seeing this in breach investigations, where the root cause often traces back to unmonitored or duplicated sensitive data left in the wrong place. We're seeing it in AI deployments, where teams rush to fine-tune models or deploy copilots without knowing what's inside the datasets they’re exposing. And we’re certainly seeing it in regulatory fines, many of which stem from nothing more than storing customer data longer than necessary, in the wrong place, or in unsecured formats.

What all of this underscores is a simple truth: you can’t protect what you can’t see.

The Role of DSPM in the Future of Data Security

At Sentra, we’ve built our platform around a core philosophy that Data Security Posture Management (DSPM) is not just a security tool, it’s the future of data security, an enabler of responsible innovation. The foundation starts with sensitive data discovery. Most organizations are surprised by how much sensitive data exists outside expected systems- in backups, temporary stores, or SaaS apps that were never properly offboarded. From there, classification adds context. It’s not enough to label something as “PII”, we need to understand how sensitive it is, who owns it, how it is being used, and how it should be governed.

We built Sentra as a cloud-native solution from day one. That means it works across IaaS, SaaS, PaaS, and even on-prem environments without needing agents or pulling data outside the customer’s environment. That last point is non-negotiable for us. As a security company, we believe strongly that extracting customer data for analysis creates unnecessary risk and liability.

To support classification at scale, especially for unstructured data, we developed our own language models using open-source LLMs. This provides the deep contextual understanding needed to accurately label large volumes of data all while maintaining cost efficiency and avoiding unnecessary compute overhead.

AI, Risk, and Responsibility in Data Securityy

One of the biggest shifts we’re seeing in the market is how AI has elevated data security from a technical concern to a boardroom issue. Security teams are now being asked to approve large-scale data usage for AI training, RAG systems, copilots, and internal assistants. But very few have the tools to answer basic questions about what’s in those datasets.

I’ve worked with customers who only realized after deploying AI that they had been exposing medical records, credentials, or confidential meeting data to the model. Once it’s in, you can’t pull it back. That’s why data classification and risk detection must come before any AI integration.

This is precisely the use case we had in mind when we built Sentra’s Data Security for AI Module. It helps teams scan, assess, and verify the contents of data before it ever touches a model. The goal isn’t to slow down innovation - it’s to make it safer, auditable, and repeatable.

Proactive Risk Management Helps Enterprises Ship Faster

One of the most exciting developments we’ve seen for the future of data security is how quickly Sentra’s data security platform becomes a strategic asset for enterprise data risk management. Time to value is fast in many cases, our customers discover major data risks just days after deployment. But beyond those early wins, the real power lies in alignment.

When security leaders can map data to risk, compliance, and governance frameworks, and do so continuously, they’re no longer operating reactively. They’re enabling the business, helping teams ship faster with fewer unknowns, and building trust around how AI and data are managed.

At scale, this kind of maturity is the difference between organizations that can confidently embrace generative AI and those that will always be playing catch-up.

A Final Word

From my time in the Israeli Defense Forces and Unit 8200 to helping enterprises build modern security programs, I’ve seen one truth over and over again: data left behind is data exposed. The volume may grow, the threats may change, but this principle doesn’t.

In 2025, securing data is no longer an aspiration, it’s a baseline. Whether you’re preparing for your next AI initiative, facing regulatory audits, or just trying to get visibility into sprawling cloud environments, DSPM should be your first step. At Sentra, we’re proud to help lead this change. And we believe the organizations that take control of their data today will be the ones best positioned to lead tomorrow.

<blogcta-big>

Read More
Team Sentra
Team Sentra
July 2, 2025
3
Min Read
Data Security

Data Blindness: The Hidden Threat Lurking in Your Cloud

Data Blindness: The Hidden Threat Lurking in Your Cloud

“If you don’t know where your sensitive data is, how can you protect it?”

It’s a simple question, but for many security and compliance teams, it’s nearly impossible to answer. When a Fortune 500 company recently paid millions in fines due to improperly stored customer data on an unmanaged cloud bucket, the real failure wasn’t just a misconfiguration. It was a lack of visibility.

Some in the industry are starting to refer to this challenge as "data blindness".

What Is Data Blindness?

Data Blindness refers to an organization’s inability to fully see, classify, and understand the sensitive data spread across its cloud, SaaS, and hybrid environments.

It’s not just another security buzzword. It’s the modern evolution of a very real problem: traditional data protection methods weren’t built for the dynamic, decentralized, and multi-cloud world we now operate in. Legacy DLP tools or one-time audits simply can’t keep up.

Unlike general data security issues, Data Blindness speaks to a specific kind of operational gap: you can’t protect what you can’t see, and most teams today are flying partially blind.

Why Data Blindness Is Getting Worse

What used to be a manageable gap in visibility has now escalated into a full-scale operational risk. As organizations accelerate cloud adoption and embrace SaaS-first architectures, the complexity of managing sensitive data has exploded. Information no longer lives in a few centralized systems, it’s scattered across AWS, Azure, and GCP instances, and a growing stack of SaaS tools, each with its own storage model, access controls, and risk profile.

At the same time, shadow data is proliferating. Sensitive information ends up in collaboration platforms, forgotten test environments, and unsanctioned apps - places that rarely make it into formal security inventories. And with the rise of generative AI tools, a new wave of unstructured content is being created and shared at scale, often without proper visibility or retention controls in place.

To make matters worse, many organizations are still operating with outdated identity and access frameworks. Stale permissions and misconfigured policies allow unnecessary access to critical data, dramatically increasing the potential impact of both internal mistakes and external breaches.

In short, the cloud hasn’t just moved the data, it’s multiplied it, fragmented it, and made it harder than ever to track. Without continuous, intelligent visibility, data blindness becomes the default.

The Hidden Risks of Operating Blind

When teams don’t have visibility into where sensitive data lives or how it moves, the consequences stack up quickly:

  • Compliance gaps: Regulations like GDPR, HIPAA, and PCI-DSS demand accurate data inventories, privacy adherence, and prompt response to DSARs. Without visibility, you risk fines and legal exposure.

  • Breach potential: Blind spots become attack vectors. Misplaced data, overexposed buckets, or forgotten environments are easy targets.

  • Wasted resources: Scanning everything (just in case) is expensive. Without prioritization, teams waste cycles on low-risk data.

  • Trust erosion: Customers expect you to know where their data is and how it’s protected. Data blindness isn’t a good look.

Do You Have Data Blindness? Here Are the Signs

  • Your security team can’t confidently answer, “Where is our most sensitive data and who has access to it?”

  • Data inventories are outdated, or built on manual tagging and spreadsheets.

  • You’re still relying on legacy DLP tools with poor context and high false positives.

  • Incident response is slow because it’s unclear what data was touched or how sensitive it was.

Sound familiar? You’re not alone.

Breaking Free from Data Blindness

Solving data blindness starts with visibility, but real progress comes from turning that visibility into action. Modern organizations need more than one-off audits or static reports. They need continuous data discovery that scans cloud, SaaS, and on-prem environments in real time, keeping up with the constant movement of data.

But discovery alone isn’t enough. Classification must go beyond content analysis, it needs to be context-aware, taking into account where the data lives, who has access to it, how it’s used, and why it matters to the business. Visibility must extend to both structured and unstructured data, since sensitive information often hides in documents, PDFs, chat logs, and spreadsheets. And finally, insights need to be integrated into existing security and compliance workflows. Detection without action is just noise.

How Sentra Solves Data Blindness

At Sentra, we give security and privacy teams the visibility and context they need to take control of their data - without disrupting operations or moving it out of place. Our cloud-native DSPM (Data Security Posture Management) platform scans and classifies data in-place across cloud, SaaS, and on-prem environments, with no agents or data removal required.

Sentra uses AI-powered, context-rich classification to achieve over 95% accuracy, helping teams identify truly sensitive data and prioritize what matters most. We provide full coverage of structured and unstructured sources, along with real-time insights into risk exposure, access patterns, and regulatory posture, all with a cost-efficient scanning model that avoids unnecessary compute usage.

One customer reduced their shadow data footprint by 30% in just a few weeks, eliminating blind spots that their legacy tools had missed for years. That’s the power of visibility, backed by context, at scale.

The Bottom Line: Awareness Is Step One

Data Blindness is real, but it’s also solvable. The first step is acknowledging the problem. The next is choosing a solution that brings your data out of the dark, without slowing down your teams or compromising security.

If you’re ready to assess your current exposure or just want to see what’s possible with modern data security, you can take a free data blindness assessment, or talk to our experts to get started.

<blogcta-big>

Read More
decorative ball
Expert Data Security Insights Straight to Your Inbox
What Should I Do Now:
1

Get the latest GigaOm DSPM Radar report - see why Sentra was named a Leader and Fast Mover in data security. Download now and stay ahead on securing sensitive data.

2

Sign up for a demo and learn how Sentra’s data security platform can uncover hidden risks, simplify compliance, and safeguard your sensitive data.

3

Follow us on LinkedIn, X (Twitter), and YouTube for actionable expert insights on how to strengthen your data security, build a successful DSPM program, and more!