All Resources
In this article:
minus iconplus icon
Share the Blog

How Does DSPM Safeguard Your Data When You Have CSPM/CNAPP

September 10, 2024
4
Min Read
Data Security

After debuting in Gartner’s 2022 Hype Cycle, Data Security Posture Management (DSPM) has quickly become a transformative category and hot security topic. DSPM solutions are popping up everywhere, both as dedicated offerings and as add-on modules to established cloud native application protection platforms (CNAPP) or cloud security posture management (CSPM) platforms.

But which option is better: adding a DSPM module to one of your existing solutions or implementing a new DSPM-focused platform? On the surface, activating a module within a CNAPP/CSPM solution that your team already uses might seem logical. But, the real question is whether or not you can reap all of the benefits of a DSPM through an add-on module. While some CNAPP platforms offer a DSPM module, these add-ons lack a fully data-centric approach, which is required to make DSPM technology effective for a modern-day business with a sprawling data ecosystem. Let’s explore this further.

How are CNAPP/CSPM and DSPM Different?

While CNAPP/CSPM and DSPM seem similar and can be complementary in many ways, they are distinctly different in a few important ways. DSPMs are all about the data — protecting it no matter where it travels. CNAPP/CSPMs focus on detecting attack paths through cloud infrastructure. So naturally, they tie specifically to the infrastructure and lack the agnostic approach of DSPM to securing the underlying data.

Because a DSPM focuses on data posture, it applies to additional use cases that CNAPP/CSPM typically doesn’t cover. This includes data privacy and data protection regulations such as GDPR, PCI-DSS, etc., as well as data breach detection based on real-time monitoring for risky data access activity. Lastly, data at rest (such as abandoned shadow data) would not necessarily be protected by CNAPP/CSPM since, by definition, it’s unknown and not an active attack path.

What is a Data-Centric Approach?

A data-centric approach is the foundation of your data security strategy that prioritizes the secure management, processing, and storage of data, ensuring that data integrity, accessibility, and privacy are maintained across all stages of its lifecycle. Standalone DSPM takes a data-centric approach. It starts with the data, using contextual information such as data location, sensitivity, and business use cases to better control and secure it. These solutions offer preventative measures, such as discovering shadow data, preventing data sprawl, and reducing the data attack surface.

Data detection and response (DDR), often offered within a DSPM platform, provides reactive measures, enabling organizations to monitor their sensitive assets and detect and prevent data exfiltration. Because standalone DSPM solutions are data-centric, many are designed to follow data across a hybrid ecosystem, including public cloud, private cloud, and on-premises environments. This is ideal for the complex environments that many organizations maintain today.

What is an Infrastructure-Centric Approach?

An infrastructure-centric solution is focused on optimizing and protecting the underlying hardware, networks, and systems that support applications and services, ensuring performance, scalability, and reliability at the infrastructure level. Both CNAPP and CSPM use infrastructure-centric approaches. Their capabilities focus on identifying vulnerabilities and misconfigurations in cloud infrastructure, as well as some basic compliance violations. CNAPP and CSPM can also identify attack paths and use several factors to prioritize which ones your team should remediate first. While both solutions can enforce policies, they can only offer security guardrails that protect static infrastructure. In addition, most CNAPP and CSPM solutions only work with public cloud environments, meaning they cannot secure private cloud or on-premises environments.

How Does a DSPM Add-On Module for CNAPP/CSPM Work?

Typically, when you add a DSPM module to CNAPP/CSPM, it can only work within the parameters set by its infrastructure-centric base solution. In other words, a DSPM add-on to a CNAPP/CSPM solution will also be infrastructure-centric. It’s like adding chocolate chips to vanilla ice cream; while they will change the flavor a bit, they can’t transform the constitution of your dessert into chocolate ice cream. 

A DSPM module in a CNAPP or CSPM solution generally has one purpose: helping your team better triage infrastructure security issues. Its sole functionality is to look at the attack paths that threaten your public cloud infrastructure, then flag which of these would most likely lead to sensitive data being breached. 

However, this functionality comes with a few caveats. While CSPM and CNAPP have some data discovery capabilities, they use very basic classification functions, such as pattern-matching techniques. This approach lacks context and granularity and requires validation by your security team. 

In addition, the DSPM add-on can only perform this data discovery within infrastructure already being monitored by the CNAPP/CSPM solution. So, it can only discover sensitive data within known public cloud environments. It may miss shadow data that has been copied to local stores or personal machines, leaving risky exposure gaps.

Why Infrastructure-Centric Solutions Aren’t Enough

So, what happens when you only use infrastructure-centric solutions in a modern cloud ecosystem? While these solutions offer powerful functionality for defending your public cloud perimeter and minimizing misconfigurations, they miss essential pieces of your data estate. Here are a few types of sensitive assets that often slip through the cracks of an infrastructure-centric approach: 

In addition, DSPM modules within CNAPP/CSPM platforms lack the context to properly classify sensitive data beyond easily identifiable examples, such as social security or credit card numbers. But, the data stores at today’s businesses often contain more nuanced personal or product/service-specific identifiers that could pose a risk if exposed. Examples include a serial number for a product that a specific individual owns or a medical ID number as part of an EHR. Some sensitive assets might even be made up of “toxic combinations,” in which the sensitivity of seemingly innocuous data classes increases when combined with specific identifiers. For example, a random 9-digit number alongside a headshot photo and expiration date is likely a sensitive passport number.

Ultimately, DSPM built into a CSPM or CNAPP solution only sees an incomplete picture of risk. This can leave any number of sensitive assets unknown and unprotected in your cloud and on-prem environments.

Dedicated DSPM Completes the Data Security Picture

A dedicated, best-of-breed DSPM solution like Sentra, on the other hand, offers rich, contextual information about all of your sensitive data — no matter where it resides, how your business uses it, or how nuanced it is. 

Rather than just defending the perimeters of known public cloud infrastructure, Sentra finds and follows your sensitive data wherever it goes.

Here are a few of Sentra’s unique capabilities that complete your picture of data security:

  • Comprehensive, security-focused data catalog of all sensitive data assets across the entire data estate (IaaS, PaaS, SaaS, and On-Premises)
  • Ability to detect unmanaged, mislocated, or abandoned data, enabling your team to reduce your data attack surface, control data sprawl, and remediate security/privacy policy violations
  • Movement detection to surface out-of-policy data transformations that violate residency and security policies or that inadvertently create exposures
  • Nuanced discovery and classification, such as row/column/table analysis capabilities that can uncover uncommon personal identifiers, toxic combinations, etc.
  • Rich context for understanding the business purpose of data to better discern its level of sensitivity
  • Lower false positive rates due to deeper analysis of the context surrounding each sensitive data store and asset
  • Automation for remediating a variety of data posture, compliance, and security issues

All of this complex analysis requires a holistic, data-centric view of your data estate — something that only a standalone DSPM solution can offer. And when deployed together with a CNAPP or CSPM solution, a standalone DSPM platform can bring unmatched depth and context to your cloud data security program. It also provides unparalleled insight to facilitate prioritization of issue resolution.

To learn more about Sentra’s approach to data security posture management, read about how we use LLMs to classify structured and unstructured sensitive data at scale.

<blogcta-big>

Yair brings a wealth of experience in cybersecurity and data product management. In his previous role, Yair led product management at Microsoft and Datadog. With a background as a member of the IDF's Unit 8200 for five years, he possesses over 18 years of expertise in enterprise software, security, data, and cloud computing. Yair has held senior product management positions at Datadog, Digital Asset, and Microsoft Azure Protection.

Subscribe

Latest Blog Posts

Gilad Golani
Gilad Golani
January 18, 2026
3
Min Read

False Positives Are Killing Your DSPM Program: How to Measure Classification Accuracy

False Positives Are Killing Your DSPM Program: How to Measure Classification Accuracy

As more organizations move sensitive data to the cloud, Data Security Posture Management (DSPM) has become a critical security investment. But as DSPM adoption grows, a big problem is emerging: security teams are overwhelmed by false positives that create too much noise and not enough useful insight. If your security program is flooded with unnecessary alerts, you end up with more risk, not less.

Most enterprises say their existing data discovery and classification solutions fall short, primarily because they misclassify data. False positives waste valuable analyst time and deteriorate trust in your security operation. Security leaders need to understand what high-quality data classification accuracy really is, why relying only on regex fails, and how to use objective metrics like precision and recall to assess potential tools. Here’s a look at what matters most for accuracy in DSPM.

What Does Good Data Classification Accuracy Look Like?

To make real progress with data classification accuracy, you first need to know how to measure it. Two key metrics - precision and recall - are at the core of reliable classification. Precision tells you the share of correct positive results among everything identified as positive, while recall shows the percentage of actual sensitive items that get caught. You want both metrics to be high. Your DSPM solution should identify sensitive data, such as PII or PCI, without generating excessive false or misclassified results.

The F1-score adds another perspective, blending precision and recall for a single number that reflects both discovery and accuracy. On the ground, these metrics mean fewer false alerts, quicker responses, and teams that spend their time fixing problems rather than chasing noise. "Good" data classification produces consistent, actionable results, even as your cloud data grows and changes.

The Hidden Cost of Regex-Only Data Discovery

A lot of older DSPM tools still depend on regular expressions (regex) to classify data in both structured and unstructured systems. Regex works for certain fixed patterns, but it struggles with the diverse, changing data types common in today’s cloud and SaaS environments. Regex can't always recognize if a string that “looks” like a personal identifier is actually just a random bit of data. This results in security teams buried by alerts they don’t need, leading to alert fatigue.

Far from helping, regex-heavy approaches waste resources and make it easier for serious risks to slip through. As privacy regulations become more demanding and the average breach hit $4.4 million according to the annual "Cost of a Data Breach Report" by IBM and the Ponemon Institute, ignoring precision and recall is becoming increasingly costly.

How to Objectively Test DSPM Accuracy in Your POC

If your current DSPM produces more noise than value, a better method starts with clear testing. A meaningful proof-of-value (POV) process uses labeled data and a confusion matrix to calculate true positives, false positives, and false negatives. Don’t rely on vendor promises. Always test their claims with data from your real environment. Ask hard questions: How does the platform classify unstructured data? How much alert noise can you expect? Can it keep accuracy high even when scanning huge volumes across SaaS, multi-cloud, and on-prem systems? The best DSPM tool cuts through the clutter, surfacing only what matters.

Sentra Delivers Highest Accuracy with Small Language Models and Context

Sentra’s DSPM platform raises the bar by going beyond regex, using purpose-built small language models (SLMs) and advanced natural language processing (NLP) for context-driven data classification at scale. Customers and analysts consistently report that Sentra achieves over the highest classification accuracy for PII and PCI, with very few false positives.

Gartner Review - Sentra received 5 stars

How does Sentra get these results without data ever leaving your environment? The platform combines multi-cloud discovery, agentless install, and deep contextual awareness - scanning extensive environments and accurately discerning real risks from background noise. Whether working with unstructured cloud data, ever-changing SaaS content, or traditional databases, Sentra keeps analysts focused on real issues and helps you stay compliant. Instead of fighting unnecessary alerts, your team sees clear results and can move faster with confidence.

Want to see Sentra DSPM in action? Schedule a Demo.

Reducing False Positives Produces Real Outcomes

Classification accuracy has a direct impact on whether your security is efficient or overwhelmed. With compliance rules tightening and threats growing, security teams cannot afford DSPM solutions that bury them in false positives. Regex-only tools no longer cut it - precision, recall, and truly reliable results should be standard.

Sentra’s SLM-powered, context-aware classification delivers the trustworthy performance businesses need, changing DSPM from just another alert engine to a real tool for reducing risk. Want to see the difference yourself? Put Sentra’s accuracy to the test in your own environment and finally move past false positive fatigue.

<blogcta-big>

Read More
Ward Balcerzak
Ward Balcerzak
January 14, 2026
4
Min Read

The Real Business Value of DSPM: Why True ROI Goes Beyond Cost Savings

The Real Business Value of DSPM: Why True ROI Goes Beyond Cost Savings

As enterprises scale cloud usage and adopt AI, the value of Data Security Posture Management (DSPM) is no longer just about checking a tool category box. It’s about protecting what matters most: sensitive data that fuels modern business and AI workflows.

Traditional content on DSPM often focuses on cost components and deployment considerations. That’s useful, but incomplete. To truly justify DSPM to executives and boards, security leaders need a holistic, outcome-focused view that ties data risk reduction to measurable business impact.

In this blog, we unpack the real, measurable benefits of DSPM, beyond just cost savings, and explain how modern DSPM strategies deliver rapid value far beyond what most legacy tools promise. 

1. Visibility Isn’t Enough - You Need Context

A common theme in DSPM discussions is that tools help you see where sensitive data lives. That’s important, but it’s only the first step. Real value comes from understanding context. Who can access the data, how it’s being used, and where risk exists in the wider security posture. Organizations that stop at discovery often struggle to prioritize risk and justify spend.

Modern DSPM solutions go further by:

  • Correlating data locations with access rights and usage patterns
  • Mapping sensitive data flows across cloud, SaaS, and hybrid environments
  • Detecting shadow data stores and unmanaged copies that silently increase exposure
  • Linking findings to business risk and compliance frameworks

This contextual intelligence drives better decisions and higher ROI because teams aren’t just counting sensitive data, they’re continuously governing it.

2. DSPM Saves Time and Shrinks Attack Surface Fast

One way DSPM delivers measurable business value is by streamlining functions that used to be manual, siloed, and slow:

  • Automated classification reduces manual tagging and human error
  • Continuous discovery eliminates periodic, snapshot-alone inventories
  • Policy enforcement reduces time spent reacting to audit requests

This translates into:

  • Faster compliance reporting
  • Shorter audit cycles
  • Rapid identification and remediation of critical risks

For security leaders, the speed of insight becomes a competitive advantage, especially in environments where data volumes grow daily and AI models can touch every corner of the enterprise.

3. Cost Benefits That Matter, but with Context

Lately I’m hearing many DSPM discussions break down cost components like scanning compute, licensing, operational expenses, and potential cloud savings. That’s a good start because DSPM can reduce cloud waste by identifying stale or redundant data, but it’s not the whole story.

 

Here’s where truly strategic DSPM differs:

Operational Efficiency

When DSPM tools automate discovery, classification, and risk scoring:

  • Teams spend less time on manual reports
  • Alert fatigue drops as noise is filtered
  • Engineers can focus on higher-value work

Breach Avoidance

Data breaches are expensive. According to industry studies, the average cost of a data breach runs into millions, far outweighing the cost of DSPM itself. A DSPM solution that prevents even one breach or major compliance failure pays for itself tenfold

Compliance as a Value Center

Rather than treating compliance as a cost center consider that:

  • DSPM reduces audit overhead
  • Provides automated evidence for frameworks like GDPR, HIPAA, PCI DSS
  • Improves confidence in reporting accuracy

That’s a measurable business benefit CFOs can appreciate and boards expect.

4. DSPM Reduces Risk Vector Multipliers Like AI

One benefit that’s often under-emphasized is how DSPM reduces risk vector multipliers, the factors that amplify risk exponentially beyond simple exposure counts.

In 2026 and beyond, AI systems are increasingly part of the risk profile. Modern DSPM help reduce the heightened risk from AI by:

  • Identifying where sensitive data intersects with AI training or inference pipelines
  • Governing how AI tools and assistants can access sensitive content
  • Providing risk context so teams can prevent data leakage into LLMs

This kind of data-centric, contextual, and continuous governance should be considered a requirement for secure AI adoption, no compromise.

5. Telling the DSPM ROI Story

The most convincing DSPM ROI stories aren’t spreadsheets, they’re narratives that align with business outcomes. The key to building a credible ROI case is connecting metrics, security impact, and business outcomes:

Metric Security Impact Business Outcome
Faster discovery & classification Fewer blind spots Reduced breach likelihood
Consistent governance enforcement Fewer compliance issues Lower audit cost
Contextual risk scoring Better prioritization Efficient resource allocation
AI governance Controlled AI exposure Safe innovation

By telling the story this way, security leaders can speak in terms the board and executives care about: risk reduction, compliance assurance, operational alignment, and controlled growth.

How to Evaluate DSPM for Real ROI

To capture tangible return, don’t evaluate DSPM solely on cost or feature checklists. Instead, test for:

1. Scalability Under Real Load

Can the tool discover and classify petabytes of data, including unstructured content, without degrading performance?

2. Accuracy That Holds Up

Poor classification undermines automation. True ROI requires consistent, top-performing accuracy rates.

3. Operational Cost Predictability

Beware of DSPM solutions that drive unexpected cloud expenses due to inefficient scanning or redundant data reads.

4. Integration With Enforcement Workflows

Visibility without action isn’t ROI. Your DSPM should feed DLP, IAM/CIEM, SIEM/SOAR, and compliance pipelines (ticketing, policy automation, alerts).

ROI Is a Journey, Not a Number

Costs matter, but value lives in context. DSPM is not just a cost center, it’s a force multiplier for secure cloud operations, AI readiness, compliance, and risk reduction. Instead of seeing DSPM as another tool, forward-looking teams view it as a fundamental decision support engine that changes how risk is measured, prioritized, and controlled.

Ready to See Real DSPM Value in Your Environment?

Download Sentra’s “DSPM Dirty Little Secrets” guide, a practical roadmap for evaluating DSPM with clarity, confidence, and production reality in mind.

👉 Download the DSPM Dirty Little Secrets guide now

Want a personalized walkthrough of how Sentra delivers measurable DSPM value?
👉 Request a demo

<blogcta-big>

Read More
Ofir Yehoshua
Ofir Yehoshua
January 13, 2026
3
Min Read

Why Infrastructure Security Is Not Enough to Protect Sensitive Data

Why Infrastructure Security Is Not Enough to Protect Sensitive Data

For years, security programs have focused on protecting infrastructure: networks, servers, endpoints, and applications. That approach made sense when systems were static and data rarely moved. It’s no longer enough.

Recent breach data shows a consistent pattern. Organizations detect incidents, restore systems, and close tickets, yet remain unable to answer the most important question regulators and customers often ask:

Where does my sensitive data reside?

Who or what has access to this data and are they authorized?

Which specific sensitive datasets were accessed or exfiltrated?

Infrastructure security alone cannot answer that question.

Infrastructure Alerts Detect Events, Not Impact

Most security tooling is infrastructure-centric by design. SIEMs, EDRs, NDRs, and CSPM tools monitor hosts, processes, IPs, and configurations. When something abnormal happens, they generate alerts.

What they do not tell you is:

  • Which specific datasets were accessed
  • Whether those datasets contained PHI or PII
  • Whether sensitive data was copied, moved, or exfiltrated

Traditional tools monitor the "plumbing" (network traffic, server logs, etc.) While they can flag that a database was accessed by an unauthorized IP, they often cannot distinguish between an attacker downloading a public template or downloading a table containing 50,000 Social Security numbers. An alert is not the same as understanding the exposure of the data stored inside it. Without that context, incident response teams are forced to infer impact rather than determine it.

The “Did They Access the Data?” Problem

This gap becomes pronounced during ransomware and extortion incidents.

In many cases:

  • Operations are restored from backups
  • Infrastructure is rebuilt
  • Access is reduced
  • (Hopefully!) attackers are removed from the environment

Yet organizations still cannot confirm whether sensitive data was accessed or exfiltrated during the dwell time.

Without data-level visibility:

  • Legal and compliance teams must assume worst-case exposure
  • Breach notifications expand unnecessarily
  • Regulatory penalties increase due to uncertainty, not necessarily damage

The inability to scope an incident accurately is not a tooling failure during the breach, it is a visibility failure that existed long before the breach occurred. Under regulations like GDPR or CCPA/CPRA, if an organization cannot prove that sensitive data wasn’t accessed during a breach, they are often legally required to notify all potentially affected parties. This ‘over-notification’ is costly and damaging to reputation.

Data Movement Is the Real Attack Vulnerability

Modern environments are defined by constant data movement:

  • Cloud migrations
  • SaaS integrations
  • App dev lifecycles
  • Analytics and ETL pipelines
  • AI and ML workflows

Each transition creates blind spots.

Legacy platforms awaiting migration often exist in a “wait state” with reduced monitoring. Data copied into cloud storage or fed into AI pipelines frequently loses lineage and classification context. Posture may vary and traditional controls no longer apply consistently. From an attacker’s perspective, these environments are ideal. From a defender’s perspective, they are blind spots.

Policies Are Not Proof

Most organizations can produce policies stating that sensitive data is encrypted, access-controlled, and monitored. Increasingly, regulators are moving from point-in-time audits to requiring continuous evidence of control.  

Regulators are asking for evidence:

  • Where does PHI live right now?
  • Who or what can access it?
  • How do you know this hasn’t changed since the last audit?

Point-in-time audits cannot answer those questions. Neither can static documentation. Exposure and access drift continuously, especially in cloud and AI-driven environments.

Compliance depends on continuous control, not periodic attestation.

What Data-Centric Security Actually Requires

Accurately proving compliance and scoping breach impact requires security visibility that is anchored to the data itself, not the infrastructure surrounding it.

At a minimum, this means:

  • Continuous discovery and classification of sensitive data
  • Consistent compliance reporting and controls across cloud, SaaS, On-Prem, and migration states
  • Clear visibility into which identities, services, and AI tools can access specific datasets
  • Detection and response signals tied directly to sensitive data exposure and movement

This is the operational foundation of Data Security Posture Management (DSPM) and Data Detection and Response (DDR). These capabilities do not replace infrastructure security controls; they close the gap those controls leave behind by connecting security events to actual data impact.

This is the problem space Sentra was built to address.

Sentra provides continuous visibility into where sensitive data lives, how it moves, and who or what can access it, and ties security and compliance outcomes to that visibility. Without this layer, organizations are forced to infer breach impact and compliance posture instead of proving it.

Why Data-Centric Security Is Required for Today's Compliance and Breach Response

Infrastructure security can detect that an incident occurred, but it cannot determine which sensitive data was accessed, copied, or exfiltrated. Without data-level evidence, organizations cannot accurately scope breaches, contain risk, or prove compliance, regardless of how many alerts or controls are in place. Modern breach response and regulatory compliance require continuous visibility into sensitive data, its lineage, and its access paths. Infrastructure-only security models are no longer sufficient.

Want to see how Sentra provides complete visibility and control of sensitive data?

Schedule a Demo

<blogcta-big>

Read More
Expert Data Security Insights Straight to Your Inbox
What Should I Do Now:
1

Get the latest GigaOm DSPM Radar report - see why Sentra was named a Leader and Fast Mover in data security. Download now and stay ahead on securing sensitive data.

2

Sign up for a demo and learn how Sentra’s data security platform can uncover hidden risks, simplify compliance, and safeguard your sensitive data.

3

Follow us on LinkedIn, X (Twitter), and YouTube for actionable expert insights on how to strengthen your data security, build a successful DSPM program, and more!

Before you go...

Get the Gartner Customers' Choice for DSPM Report

Read why 98% of users recommend Sentra.

White Gartner Peer Insights Customers' Choice 2025 badge with laurel leaves inside a speech bubble.